Namespaces
Variants
Actions

Reflection of an object of a category

From Encyclopedia of Mathematics
Revision as of 17:18, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

reflector of an object of a category

Let be a subcategory of a category ; an object is called a reflection of an object in , or a -reflection, if there exists a morphism such that for any object of the mapping

is bijective. In other words, for any morphism there is a unique morphism such that . A -reflection of an object is not uniquely defined, but any two -reflections of an object are isomorphic. The -reflection of an initial object of is an initial object in . The left adjoint of the inclusion functor (if it exists), i.e. the functor assigning to an object of its reflection in , is called a reflector.

Examples. In the category of groups the quotient group of an arbitrary group by its commutator subgroup is a reflection of in the subcategory of Abelian groups. For an Abelian group , the quotient group by its torsion subgroup is a reflection of in the full subcategory of torsion-free Abelian groups. The injective hull of the group is a reflection of the groups and in the subcategory of full torsion-free Abelian groups.

Reflections are usually examined in full subcategories. A full subcategory of a category in which there are reflections for all objects of is called reflective (cf. Reflexive category).


Comments

The reflection of an object solves a universal problem (cf. Universal problems).

How to Cite This Entry:
Reflection of an object of a category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reflection_of_an_object_of_a_category&oldid=16715
This article was adapted from an original article by M.Sh. Tsalenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article