Namespaces
Variants
Actions

Difference between revisions of "Reflection of an object of a category"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (link)
Line 7: Line 7:
 
is bijective. In other words, for any morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053012.png" /> there is a unique morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053013.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053014.png" />. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053015.png" />-reflection of an object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053016.png" /> is not uniquely defined, but any two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053017.png" />-reflections of an object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053018.png" /> are isomorphic. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053019.png" />-reflection of an initial object of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053020.png" /> is an initial object in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053021.png" />. The left adjoint of the inclusion functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053022.png" /> (if it exists), i.e. the functor assigning to an object of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053023.png" /> its reflection in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053024.png" />, is called a reflector.
 
is bijective. In other words, for any morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053012.png" /> there is a unique morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053013.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053014.png" />. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053015.png" />-reflection of an object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053016.png" /> is not uniquely defined, but any two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053017.png" />-reflections of an object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053018.png" /> are isomorphic. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053019.png" />-reflection of an initial object of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053020.png" /> is an initial object in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053021.png" />. The left adjoint of the inclusion functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053022.png" /> (if it exists), i.e. the functor assigning to an object of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053023.png" /> its reflection in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053024.png" />, is called a reflector.
  
Examples. In the category of groups the quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053025.png" /> of an arbitrary group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053026.png" /> by its commutator subgroup is a reflection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053027.png" /> in the subcategory of Abelian groups. For an Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053028.png" />, the quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053029.png" /> by its torsion subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053030.png" /> is a reflection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053031.png" /> in the full subcategory of torsion-free Abelian groups. The injective hull <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053032.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053033.png" /> is a reflection of the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053035.png" /> in the subcategory of full torsion-free Abelian groups.
+
Examples. In the category of groups the quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053025.png" /> of an arbitrary group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053026.png" /> by its commutator subgroup is a reflection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053027.png" /> in the subcategory of Abelian groups. For an Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053028.png" />, the quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053029.png" /> by its torsion subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053030.png" /> is a reflection of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053031.png" /> in the full subcategory of torsion-free Abelian groups. The [[injective hull]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053032.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053033.png" /> is a reflection of the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053035.png" /> in the subcategory of full torsion-free Abelian groups.
  
 
Reflections are usually examined in full subcategories. A full subcategory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053036.png" /> of a category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053037.png" /> in which there are reflections for all objects of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053038.png" /> is called reflective (cf. [[Reflective subcategory|Reflexive category]]).
 
Reflections are usually examined in full subcategories. A full subcategory <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053036.png" /> of a category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053037.png" /> in which there are reflections for all objects of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080530/r08053038.png" /> is called reflective (cf. [[Reflective subcategory|Reflexive category]]).

Revision as of 20:29, 30 October 2016

reflector of an object of a category

Let be a subcategory of a category ; an object is called a reflection of an object in , or a -reflection, if there exists a morphism such that for any object of the mapping

is bijective. In other words, for any morphism there is a unique morphism such that . A -reflection of an object is not uniquely defined, but any two -reflections of an object are isomorphic. The -reflection of an initial object of is an initial object in . The left adjoint of the inclusion functor (if it exists), i.e. the functor assigning to an object of its reflection in , is called a reflector.

Examples. In the category of groups the quotient group of an arbitrary group by its commutator subgroup is a reflection of in the subcategory of Abelian groups. For an Abelian group , the quotient group by its torsion subgroup is a reflection of in the full subcategory of torsion-free Abelian groups. The injective hull of the group is a reflection of the groups and in the subcategory of full torsion-free Abelian groups.

Reflections are usually examined in full subcategories. A full subcategory of a category in which there are reflections for all objects of is called reflective (cf. Reflexive category).


Comments

The reflection of an object solves a universal problem (cf. Universal problems).

How to Cite This Entry:
Reflection of an object of a category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reflection_of_an_object_of_a_category&oldid=16715
This article was adapted from an original article by M.Sh. Tsalenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article