Namespaces
Variants
Actions

Difference between revisions of "Reductive space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A [[Homogeneous space|homogeneous space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r0804501.png" /> of a connected [[Lie group|Lie group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r0804502.png" /> such that in the [[Lie algebra|Lie algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r0804503.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r0804504.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r0804505.png" />-invariant subspace complementary to the subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r0804506.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r0804507.png" /> is the Lie algebra of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r0804508.png" />. The validity of any of the following conditions is sufficient for the homogeneous space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r0804509.png" /> to be reductive: 1) the linear group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045010.png" /> is completely reducible; or 2) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045011.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045012.png" />-invariant bilinear form whose restriction to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045013.png" /> is non-degenerate. In particular, any homogeneous Riemannian space is reductive. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045014.png" /> is a reductive space and the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045015.png" /> acts effectively on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045016.png" />, then the linear representation of the isotropy group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045017.png" /> in the tangent space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045018.png" /> to the manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045019.png" /> at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045020.png" /> is faithful (cf. [[Faithful representation|Faithful representation]]). Two important <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045021.png" />-invariant affine connections on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045022.png" /> are associated with each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045023.png" />-invariant subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045024.png" /> complementary to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045025.png" />: the canonical connection and the natural torsion-free connection. The canonical connection on the reductive space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045026.png" /> with a fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045027.png" />-invariant decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045028.png" /> is the unique <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045029.png" />-invariant affine connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045030.png" /> such that for any vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045031.png" /> and any frame <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045032.png" /> at the point 0, the curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045033.png" /> in the principal fibration of frames over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045034.png" /> is horizontal. The canonical connection is complete and the set of its geodesics through 0 coincides with the set of curves of the type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045035.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045036.png" />. After the natural identification of the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045038.png" />, the curvature tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045039.png" /> and torsion tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045040.png" /> of the canonical connection are defined by the formulas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045041.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045042.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045045.png" /> denote the projections of the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045046.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045048.png" />, respectively.
+
<!--
 +
r0804501.png
 +
$#A+1 = 117 n = 1
 +
$#C+1 = 117 : ~/encyclopedia/old_files/data/R080/R.0800450 Reductive space
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The tensor fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045050.png" /> are parallel relative to the canonical connection, as is any other <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045051.png" />-invariant tensor field on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045052.png" />. The Lie algebra of the linear holonomy group (see [[Holonomy group|Holonomy group]]) of the canonical connections on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045053.png" /> with supporting point 0 is generated by the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045054.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045055.png" /> is the linear representation of the isotropy Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045056.png" /> in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045057.png" />. Any connected simply-connected manifold with a complete affine connection with parallel curvature and torsion fields can be represented as a reductive space whose canonical connection coincides with the given affine connection. In the reductive space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045058.png" /> with fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045059.png" />-invariant decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045060.png" /> there is a unique <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045061.png" />-invariant affine connection with zero torsion having the same geodesics as the canonical connection. This connection is called the natural torsion-free connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045062.png" /> (relative to the decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045063.png" />). A homogeneous Riemannian or pseudo-Riemannian space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045064.png" /> is naturally reductive if it admits an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045065.png" />-invariant decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045066.png" /> such that
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045067.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
A [[Homogeneous space|homogeneous space]]  $  G/H $
 +
of a connected [[Lie group|Lie group]]  $  G $
 +
such that in the [[Lie algebra|Lie algebra]]  $  \mathfrak g $
 +
of  $  G $
 +
there is an  $  \mathop{\rm Ad} _ {\mathfrak g} ( H) $-
 +
invariant subspace complementary to the subalgebra  $  \mathfrak h \subset  \mathfrak g $,
 +
where  $  \mathfrak h $
 +
is the Lie algebra of the group  $  H $.
 +
The validity of any of the following conditions is sufficient for the homogeneous space  $  G/H $
 +
to be reductive: 1) the linear group  $  \mathop{\rm Ad} _ {\mathfrak g} ( H) $
 +
is completely reducible; or 2) in  $  \mathfrak g $
 +
there is an  $  \mathop{\rm Ad} _ {\mathfrak g} ( H) $-
 +
invariant bilinear form whose restriction to  $  \mathfrak h $
 +
is non-degenerate. In particular, any homogeneous Riemannian space is reductive. If  $  M = G/H $
 +
is a reductive space and the group  $  G $
 +
acts effectively on  $  M $,
 +
then the linear representation of the isotropy group  $  H $
 +
in the tangent space  $  M _ {0} $
 +
to the manifold  $  M $
 +
at the point  $  0 = eH \in M $
 +
is faithful (cf. [[Faithful representation|Faithful representation]]). Two important  $  G $-
 +
invariant affine connections on  $  M $
 +
are associated with each  $  \mathop{\rm Ad} _ {\mathfrak g} ( H) $-
 +
invariant subspace  $  \mathfrak m \subset  \mathfrak g $
 +
complementary to  $  \mathfrak h $:  
 +
the canonical connection and the natural torsion-free connection. The canonical connection on the reductive space  $  M = G/H $
 +
with a fixed  $  \mathop{\rm Ad} _ {\mathfrak g} ( H) $-
 +
invariant decomposition  $  \mathfrak g = \mathfrak h \dot{+} \mathfrak m $
 +
is the unique  $  G $-
 +
invariant affine connection on  $  M $
 +
such that for any vector  $  X \in \mathfrak m $
 +
and any frame  $  u $
 +
at the point 0, the curve  $  (  \mathop{\rm exp}  tX) u $
 +
in the principal fibration of frames over  $  M $
 +
is horizontal. The canonical connection is complete and the set of its geodesics through 0 coincides with the set of curves of the type  $  (  \mathop{\rm exp}  tX) 0 $,
 +
where  $  X \in \mathfrak m $.  
 +
After the natural identification of the spaces  $  \mathfrak m $
 +
and  $  M _ {0} $,
 +
the curvature tensor  $  R $
 +
and torsion tensor  $  T $
 +
of the canonical connection are defined by the formulas  $  ( R( X, Y) Z) _ {0} = - [[ X, Y] _ {\mathfrak h} , Z] $
 +
and  $  T( X, Y) _ {0} = -[ X, Y] _ {\mathfrak m} $,
 +
where  $  X, Y, Z \in \mathfrak m $
 +
and  $  W _ {\mathfrak h} $
 +
and  $  W _ {\mathfrak m} $
 +
denote the projections of the vector  $  W \in \mathfrak g $
 +
onto  $  \mathfrak h $
 +
and  $  \mathfrak m $,
 +
respectively.
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045068.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045069.png" /> is the non-degenerate symmetric bilinear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045070.png" /> induced by the Riemannian (pseudo-Riemannian) structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045071.png" /> under the natural identification of the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045072.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045073.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045074.png" /> is a naturally reductive Riemannian or pseudo-Riemannian space with a fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045075.png" />-invariant decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045076.png" /> that satisfies condition (*), then the natural torsion-free connection coincides with the corresponding Riemannian or pseudo-Riemannian connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045077.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045078.png" /> is a simply-connected naturally reductive homogeneous Riemannian space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045079.png" /> is its de Rham decomposition, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045080.png" /> can be represented in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045081.png" />; moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045082.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045083.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045084.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045085.png" />.
+
The tensor fields  $  R $
 +
and  $  T $
 +
are parallel relative to the canonical connection, as is any other  $  G $-
 +
invariant tensor field on $  M $.  
 +
The Lie algebra of the linear holonomy group (see [[Holonomy group|Holonomy group]]) of the canonical connections on $  M $
 +
with supporting point 0 is generated by the set  $  \{ {\lambda ([ X, Y] _ {\mathfrak h} ) } : {X, Y \in \mathfrak m } \} $,
 +
where  $  \lambda $
 +
is the linear representation of the isotropy Lie algebra  $  \mathfrak h $
 +
in the space  $  M _ {0} $.  
 +
Any connected simply-connected manifold with a complete affine connection with parallel curvature and torsion fields can be represented as a reductive space whose canonical connection coincides with the given affine connection. In the reductive space  $  M = G/H $
 +
with fixed  $  \mathop{\rm Ad} _ {\mathfrak g} ( H) $-
 +
invariant decomposition $  \mathfrak g = \mathfrak h \dot{+} \mathfrak m $
 +
there is a unique  $  G $-
 +
invariant affine connection with zero torsion having the same geodesics as the canonical connection. This connection is called the natural torsion-free connection on  $  M $(
 +
relative to the decomposition  $  \mathfrak g = \mathfrak h \dot{+} \mathfrak m $).
 +
A homogeneous Riemannian or pseudo-Riemannian space  $  M = G/H $
 +
is naturally reductive if it admits an  $  \mathop{\rm Ad} _ {\mathfrak g} ( H) $-
 +
invariant decomposition $  \mathfrak g = \mathfrak h \dot{+} \mathfrak m $
 +
such that
  
An important generalization of reductive spaces are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045086.png" />-reductive homogeneous spaces [[#References|[4]]]. A homogeneous space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045087.png" /> is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045089.png" />-reductive if its stationary subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045090.png" /> equals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045091.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045092.png" />, and if there is a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045093.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045094.png" /> complementary to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045095.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045096.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045097.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045098.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r08045099.png" />-reductive homogeneous spaces are in fact reductive spaces; examples of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450100.png" />-reductive homogeneous spaces are projective (and conformal) spaces on which a group of projective (or conformal) transformations acts. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450101.png" /> there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450102.png" />-reductive homogeneous space and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450103.png" />, then the linear representation of the isotropy Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450104.png" /> is not faithful (since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450105.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450106.png" />); consequently, there is no <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450107.png" />-invariant affine connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450108.png" />. However, there is a canonical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450109.png" />-invariant connection on a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450110.png" />-reductive homogeneous space with the homogeneous space of some transitive-differential group of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450111.png" /> as fibre (see [[#References|[4]]]). Reductive and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450112.png" />-reductive spaces are characterized as maximally homogeneous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450113.png" />-structures (cf. [[G-structure(2)|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450114.png" />-structure]]) of appropriate type (cf. [[#References|[6]]]).
+
$$ \tag{* }
 +
B( X, [ Z, Y] _ {\mathfrak m} ) + B ([ Z, X] _ {\mathfrak m} , Y) = 0
 +
$$
  
In addition to reductive spaces, partially reductive spaces are also examined, i.e. homogeneous spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450115.png" /> such that there is a decomposition of the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450116.png" /> into a direct sum of two non-zero <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450117.png" />-invariant subspaces, one of which contains the subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450118.png" /> (see [[#References|[5]]]).
+
for all  $  X, Y, Z \in \mathfrak m $,
 +
where  $  B $
 +
is the non-degenerate symmetric bilinear form on  $  \mathfrak m $
 +
induced by the Riemannian (pseudo-Riemannian) structure on  $  M $
 +
under the natural identification of the spaces  $  \mathfrak m $
 +
and  $  M _ {0} $.
 +
If  $  M = G/H $
 +
is a naturally reductive Riemannian or pseudo-Riemannian space with a fixed  $  \mathop{\rm Ad} _ {\mathfrak g} ( H) $-
 +
invariant decomposition  $  \mathfrak g = \mathfrak h \dot{+} \mathfrak m $
 +
that satisfies condition (*), then the natural torsion-free connection coincides with the corresponding Riemannian or pseudo-Riemannian connection on  $  M $.
 +
If  $  M $
 +
is a simply-connected naturally reductive homogeneous Riemannian space and  $  M = M _ {0} \times \dots \times M _ {r} $
 +
is its de Rham decomposition, then  $  M $
 +
can be represented in the form  $  M = G/H $;
 +
moreover,  $  G = G _ {0} \times \dots \times G _ {r} $,
 +
$  H = H _ {0} \times \dots \times H _ {r} $
 +
and  $  M _ {i} = G _ {i} /H _ {i} $
 +
$  ( i = 0 \dots r) $.
 +
 
 +
An important generalization of reductive spaces are  $  \nu $-
 +
reductive homogeneous spaces [[#References|[4]]]. A homogeneous space  $  G/H $
 +
is called  $  \nu $-
 +
reductive if its stationary subalgebra  $  \mathfrak h $
 +
equals  $  \mathfrak h _ {1} \dot{+} \dots \dot{+} \mathfrak h _  \nu  $,
 +
where  $  \mathfrak h _  \nu  \neq \{ 0 \} $,
 +
and if there is a subspace  $  \mathfrak m $
 +
in  $  \mathfrak h $
 +
complementary to  $  \mathfrak h $
 +
such that  $  [ \mathfrak h _ {i} , \mathfrak m ] \subset  \mathfrak h _ {i-} 1 $,
 +
$  i = 1 \dots \nu $,
 +
where  $  \mathfrak h _ {0} = \mathfrak m $.
 +
The  $  1 $-
 +
reductive homogeneous spaces are in fact reductive spaces; examples of  $  2 $-
 +
reductive homogeneous spaces are projective (and conformal) spaces on which a group of projective (or conformal) transformations acts. If  $  M = G/H $
 +
there is a  $  \nu $-
 +
reductive homogeneous space and if  $  \nu > 1 $,
 +
then the linear representation of the isotropy Lie algebra  $  \mathfrak h $
 +
is not faithful (since  $  [ \mathfrak h _ {i} , \mathfrak m ] \subset  \mathfrak h $
 +
when  $  i > 1 $);
 +
consequently, there is no  $  G $-
 +
invariant affine connection on  $  M $.
 +
However, there is a canonical  $  G $-
 +
invariant connection on a  $  \nu $-
 +
reductive homogeneous space with the homogeneous space of some transitive-differential group of order  $  \nu $
 +
as fibre (see [[#References|[4]]]). Reductive and  $  \nu $-
 +
reductive spaces are characterized as maximally homogeneous  $  G $-
 +
structures (cf. [[G-structure| $  G $-
 +
structure]]) of appropriate type (cf. [[#References|[6]]]).
 +
 
 +
In addition to reductive spaces, partially reductive spaces are also examined, i.e. homogeneous spaces $  G/H $
 +
such that there is a decomposition of the Lie algebra $  \mathfrak g $
 +
into a direct sum of two non-zero $  \mathop{\rm Ad} _ {\mathfrak g} ( H) $-
 +
invariant subspaces, one of which contains the subalgebra $  \mathfrak h $(
 +
see [[#References|[5]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Kobayashi,  K. Nomizu,  "Foundations of differential geometry" , '''2''' , Interscience  (1969)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.K. Rashevskii,  "On the geometry of homogeneous spaces"  ''Trudy Sem. Vektor. i Tenzor. Anal.'' , '''9'''  (1952)  pp. 49–74</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  K. Nomizu,  "Invariant affine connections on homogeneous spaces"  ''Amer. J. Math.'' , '''76''' :  1  (1954)  pp. 33–65</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  I.L. Kantor,  "Transitive differential groups and invariant connections in homogeneous spaces"  ''Trudy Sem. Vektor. i Tenzor. Anal.'' , '''13'''  (1966)  pp. 310–398</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  E.B. Vinberg,  "Invariant linear connections in a homogeneous space"  ''Trudy Moskov. Mat. Obshch.'' , '''9'''  (1960)  pp. 191–210  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  D.V. Alekseevskii,  "Maximally homogeneous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450119.png" />-structures and filtered Lie algebras"  ''Soviet Math. Dokl.'' , '''37''' :  2  (1988)  pp. 381–384  ''Dokl. Akad. Nauk SSSR'' , '''299''' :  3  (1988)  pp. 521–526</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Kobayashi,  K. Nomizu,  "Foundations of differential geometry" , '''2''' , Interscience  (1969)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.K. Rashevskii,  "On the geometry of homogeneous spaces"  ''Trudy Sem. Vektor. i Tenzor. Anal.'' , '''9'''  (1952)  pp. 49–74</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  K. Nomizu,  "Invariant affine connections on homogeneous spaces"  ''Amer. J. Math.'' , '''76''' :  1  (1954)  pp. 33–65</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  I.L. Kantor,  "Transitive differential groups and invariant connections in homogeneous spaces"  ''Trudy Sem. Vektor. i Tenzor. Anal.'' , '''13'''  (1966)  pp. 310–398</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  E.B. Vinberg,  "Invariant linear connections in a homogeneous space"  ''Trudy Moskov. Mat. Obshch.'' , '''9'''  (1960)  pp. 191–210  (In Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  D.V. Alekseevskii,  "Maximally homogeneous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080450/r080450119.png" />-structures and filtered Lie algebras"  ''Soviet Math. Dokl.'' , '''37''' :  2  (1988)  pp. 381–384  ''Dokl. Akad. Nauk SSSR'' , '''299''' :  3  (1988)  pp. 521–526</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.A. Wolf,  "Spaces of constant curvature" , McGraw-Hill  (1967)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.A. Wolf,  "Spaces of constant curvature" , McGraw-Hill  (1967)</TD></TR></table>

Latest revision as of 08:10, 6 June 2020


A homogeneous space $ G/H $ of a connected Lie group $ G $ such that in the Lie algebra $ \mathfrak g $ of $ G $ there is an $ \mathop{\rm Ad} _ {\mathfrak g} ( H) $- invariant subspace complementary to the subalgebra $ \mathfrak h \subset \mathfrak g $, where $ \mathfrak h $ is the Lie algebra of the group $ H $. The validity of any of the following conditions is sufficient for the homogeneous space $ G/H $ to be reductive: 1) the linear group $ \mathop{\rm Ad} _ {\mathfrak g} ( H) $ is completely reducible; or 2) in $ \mathfrak g $ there is an $ \mathop{\rm Ad} _ {\mathfrak g} ( H) $- invariant bilinear form whose restriction to $ \mathfrak h $ is non-degenerate. In particular, any homogeneous Riemannian space is reductive. If $ M = G/H $ is a reductive space and the group $ G $ acts effectively on $ M $, then the linear representation of the isotropy group $ H $ in the tangent space $ M _ {0} $ to the manifold $ M $ at the point $ 0 = eH \in M $ is faithful (cf. Faithful representation). Two important $ G $- invariant affine connections on $ M $ are associated with each $ \mathop{\rm Ad} _ {\mathfrak g} ( H) $- invariant subspace $ \mathfrak m \subset \mathfrak g $ complementary to $ \mathfrak h $: the canonical connection and the natural torsion-free connection. The canonical connection on the reductive space $ M = G/H $ with a fixed $ \mathop{\rm Ad} _ {\mathfrak g} ( H) $- invariant decomposition $ \mathfrak g = \mathfrak h \dot{+} \mathfrak m $ is the unique $ G $- invariant affine connection on $ M $ such that for any vector $ X \in \mathfrak m $ and any frame $ u $ at the point 0, the curve $ ( \mathop{\rm exp} tX) u $ in the principal fibration of frames over $ M $ is horizontal. The canonical connection is complete and the set of its geodesics through 0 coincides with the set of curves of the type $ ( \mathop{\rm exp} tX) 0 $, where $ X \in \mathfrak m $. After the natural identification of the spaces $ \mathfrak m $ and $ M _ {0} $, the curvature tensor $ R $ and torsion tensor $ T $ of the canonical connection are defined by the formulas $ ( R( X, Y) Z) _ {0} = - [[ X, Y] _ {\mathfrak h} , Z] $ and $ T( X, Y) _ {0} = -[ X, Y] _ {\mathfrak m} $, where $ X, Y, Z \in \mathfrak m $ and $ W _ {\mathfrak h} $ and $ W _ {\mathfrak m} $ denote the projections of the vector $ W \in \mathfrak g $ onto $ \mathfrak h $ and $ \mathfrak m $, respectively.

The tensor fields $ R $ and $ T $ are parallel relative to the canonical connection, as is any other $ G $- invariant tensor field on $ M $. The Lie algebra of the linear holonomy group (see Holonomy group) of the canonical connections on $ M $ with supporting point 0 is generated by the set $ \{ {\lambda ([ X, Y] _ {\mathfrak h} ) } : {X, Y \in \mathfrak m } \} $, where $ \lambda $ is the linear representation of the isotropy Lie algebra $ \mathfrak h $ in the space $ M _ {0} $. Any connected simply-connected manifold with a complete affine connection with parallel curvature and torsion fields can be represented as a reductive space whose canonical connection coincides with the given affine connection. In the reductive space $ M = G/H $ with fixed $ \mathop{\rm Ad} _ {\mathfrak g} ( H) $- invariant decomposition $ \mathfrak g = \mathfrak h \dot{+} \mathfrak m $ there is a unique $ G $- invariant affine connection with zero torsion having the same geodesics as the canonical connection. This connection is called the natural torsion-free connection on $ M $( relative to the decomposition $ \mathfrak g = \mathfrak h \dot{+} \mathfrak m $). A homogeneous Riemannian or pseudo-Riemannian space $ M = G/H $ is naturally reductive if it admits an $ \mathop{\rm Ad} _ {\mathfrak g} ( H) $- invariant decomposition $ \mathfrak g = \mathfrak h \dot{+} \mathfrak m $ such that

$$ \tag{* } B( X, [ Z, Y] _ {\mathfrak m} ) + B ([ Z, X] _ {\mathfrak m} , Y) = 0 $$

for all $ X, Y, Z \in \mathfrak m $, where $ B $ is the non-degenerate symmetric bilinear form on $ \mathfrak m $ induced by the Riemannian (pseudo-Riemannian) structure on $ M $ under the natural identification of the spaces $ \mathfrak m $ and $ M _ {0} $. If $ M = G/H $ is a naturally reductive Riemannian or pseudo-Riemannian space with a fixed $ \mathop{\rm Ad} _ {\mathfrak g} ( H) $- invariant decomposition $ \mathfrak g = \mathfrak h \dot{+} \mathfrak m $ that satisfies condition (*), then the natural torsion-free connection coincides with the corresponding Riemannian or pseudo-Riemannian connection on $ M $. If $ M $ is a simply-connected naturally reductive homogeneous Riemannian space and $ M = M _ {0} \times \dots \times M _ {r} $ is its de Rham decomposition, then $ M $ can be represented in the form $ M = G/H $; moreover, $ G = G _ {0} \times \dots \times G _ {r} $, $ H = H _ {0} \times \dots \times H _ {r} $ and $ M _ {i} = G _ {i} /H _ {i} $ $ ( i = 0 \dots r) $.

An important generalization of reductive spaces are $ \nu $- reductive homogeneous spaces [4]. A homogeneous space $ G/H $ is called $ \nu $- reductive if its stationary subalgebra $ \mathfrak h $ equals $ \mathfrak h _ {1} \dot{+} \dots \dot{+} \mathfrak h _ \nu $, where $ \mathfrak h _ \nu \neq \{ 0 \} $, and if there is a subspace $ \mathfrak m $ in $ \mathfrak h $ complementary to $ \mathfrak h $ such that $ [ \mathfrak h _ {i} , \mathfrak m ] \subset \mathfrak h _ {i-} 1 $, $ i = 1 \dots \nu $, where $ \mathfrak h _ {0} = \mathfrak m $. The $ 1 $- reductive homogeneous spaces are in fact reductive spaces; examples of $ 2 $- reductive homogeneous spaces are projective (and conformal) spaces on which a group of projective (or conformal) transformations acts. If $ M = G/H $ there is a $ \nu $- reductive homogeneous space and if $ \nu > 1 $, then the linear representation of the isotropy Lie algebra $ \mathfrak h $ is not faithful (since $ [ \mathfrak h _ {i} , \mathfrak m ] \subset \mathfrak h $ when $ i > 1 $); consequently, there is no $ G $- invariant affine connection on $ M $. However, there is a canonical $ G $- invariant connection on a $ \nu $- reductive homogeneous space with the homogeneous space of some transitive-differential group of order $ \nu $ as fibre (see [4]). Reductive and $ \nu $- reductive spaces are characterized as maximally homogeneous $ G $- structures (cf. $ G $- structure) of appropriate type (cf. [6]).

In addition to reductive spaces, partially reductive spaces are also examined, i.e. homogeneous spaces $ G/H $ such that there is a decomposition of the Lie algebra $ \mathfrak g $ into a direct sum of two non-zero $ \mathop{\rm Ad} _ {\mathfrak g} ( H) $- invariant subspaces, one of which contains the subalgebra $ \mathfrak h $( see [5]).

References

[1] S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 2 , Interscience (1969)
[2] P.K. Rashevskii, "On the geometry of homogeneous spaces" Trudy Sem. Vektor. i Tenzor. Anal. , 9 (1952) pp. 49–74
[3] K. Nomizu, "Invariant affine connections on homogeneous spaces" Amer. J. Math. , 76 : 1 (1954) pp. 33–65
[4] I.L. Kantor, "Transitive differential groups and invariant connections in homogeneous spaces" Trudy Sem. Vektor. i Tenzor. Anal. , 13 (1966) pp. 310–398
[5] E.B. Vinberg, "Invariant linear connections in a homogeneous space" Trudy Moskov. Mat. Obshch. , 9 (1960) pp. 191–210 (In Russian)
[6] D.V. Alekseevskii, "Maximally homogeneous -structures and filtered Lie algebras" Soviet Math. Dokl. , 37 : 2 (1988) pp. 381–384 Dokl. Akad. Nauk SSSR , 299 : 3 (1988) pp. 521–526

Comments

References

[a1] J.A. Wolf, "Spaces of constant curvature" , McGraw-Hill (1967)
How to Cite This Entry:
Reductive space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reductive_space&oldid=11232
This article was adapted from an original article by D.V. Alekseevskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article