Namespaces
Variants
Actions

Rectifiable set

From Encyclopedia of Mathematics
Revision as of 07:12, 4 August 2012 by Camillo.delellis (talk | contribs) (Created page with "{{MSC|49Q15}} Category:Classical measure theory {{TEX|done}} Also called ''countable rectifiable set''. A central concept in Geometric measure theory, first introd...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

2020 Mathematics Subject Classification: Primary: 49Q15 [MSN][ZBL]

Also called countable rectifiable set. A central concept in Geometric measure theory, first introduced by Besicovitch for $1$-dimensional sets in the plane. Rectifiable sets of the euclidean space can be thought as measure-theoretic generalizations of $C^1$ submanifolds.

Definitions

Rectifiable subsets of the Euclidean space $\mathbb R^n$ can be defined in several ways. In what follows we denote by $\mathcal{H}^\alpha$ the Hausdorff $\alpha$-dimensional measure.

Definition 1 A Borel set $E\subset \mathbb R^n$ is a rectifiable subset of dimension $k$ if it has Hausdorff dimension $k$ and there is a countable family of Lipschitz maps $f_i: \mathbb R^k \to \mathbb R^n$ such that their images cover $\mathcal{H}^k$-almost all $E$.

Definition 2 A Borel set $E\subset \mathbb R^n$ is a rectifiable subset of dimension $k$ if it has Hausdorff dimension $k$ and there is a countable family of Lipschitz $k$-dimensional graphs of $\mathbb R^n$ which cover $\mathcal{H}^k$-almost all $E$.

Definition 3 A Borel set $E\subset \mathbb R^n$ is a rectifiable subset of dimension $k$ if it has Hausdorff dimension $k$ and there is a countable family of $C^1$ $k$-dimensional submanifolds of $\mathbb R^n$ which cover $\mathcal{H}^k$-almost all $E$.

All these definitions are equivalent. The first one can be easily generalized to define rectifiable subsets in metric spaces. The assumption that $E$ is a Borel set might be dropped. In that case, however, the set might not be $\mathcal{H}^k$-measurable. In what follows we might assume that $E$ is $\mathcal{H}^k$ measurable: $\mathcal{H}^k$-measurable sets can be decomposed into the union of a Borel set and an $\mathcal{H}^k$-null set.

A Borel set of Hausdorff dimension $k$ which is not rectifiable is called unrectifiable.

Definition 4 An unrectifiable $k$-dimensional set $E\subset \mathbb R^n$ is called purely unrectifiable if its intersection with any $k$-dimensional rectifiable set is an $\mathcal{H}^k$-null set.

It follows from the equivalence of the first three definitions that an unrectifiable set is purely unrectifiable if and only if its intersection with the image of an arbitrary Lipschitz map $f:\mathbb R^k\to \mathbb R^n$ (resp. with an arbitrary Lipschitz $k$-dimensional graph or with an arbitrary $C^1$ $k$-dimensional submanifold) is an $\mathcal{H}^k$-null set.

Properties

It follows from the definition that a rectifiable set $E$ has $\sigma$-finite $\mathcal{H}^k$ measure. A simple argument gives the following decomposition theorem.

Theorem 5 If $E\subset \mathbb R^n$ is a Borel set, then there is a rectifiable set $R$ and a purely unrectifiable set $R$ such that $E= R\cup P$. The decomposition is unique up to $\mathcal{H}^k$-null sets.

A useful decomposition of rectifiable sets is the following.

Theorem 6 If $E\subset \mathbb R^n$ is a rectifiable $k$-dimensional set, then there are

  • An $\mathcal{H}^k$-null set $E_0$
  • Countably many $C^1$ $k$-dimensional submanifolds $\Gamma_i$ ($i\geq 1$) of $\mathbb R^n$
  • Compact subsets $E_i$ of $\Gamma_i$

such that the collection $\{E_i\}_{i\in\mathbb N}$ is a partition of $E$ (i.e. the sets are pairwise disjoint and their union is $E$).

Approximate tangent planes

Let $E$ be a rectifiable $k$-dimensional subset of $E\mathbb R^n$ and $f$ be a nonnegative Borel function $f: E\to \mathbb R$ such that $\int_E f\, d\mathcal{H}^k <\infty$. Consider the Radon measure $\mu$ defined through \begin{equation}\label{e:misura} \mu (E) = \int_{E\cap A} f\, d\mathcal{H}^k \, . \end{equation} Then the measure $\mu$ has approximate tangent planes at $\mu$--a.e. point $x$, in the following sense:

Proposition 7 For $\mu$-a.e. $x\in\mathbb R^n$ there is a $k$-dimensional plane $\pi$ such that the rescaled measures $\mu_{x,r}$ given by \begin{equation}\label{e:rescaled} \mu_{x,r} (A) = r^{-k} \mu (x+rA) \end{equation} converge, as $r\downarrow 0$ to the measure $\mu_{x,0}$ given by \begin{equation}\label{e:app_tangent} \mu_{x, 0} (A) = f(x_0) \mathcal{H}^k (A\cap \pi) \end{equation} in the weak$^\star$ topology (see Convergence of measures).

The plane $\pi$ of the above proposition is called approximate tangent plane of the measure $\mu$, but it is related to the geometry of the set $E$ and it generalizes the classical notion of tangent plane for $C^1$ submanifolds of the euclidean space. Indeed it can be proved that $\pi$ coincides with the classical tangent plane of the submanifold $\Gamma_i$ of Proposition 7 at $\mathcal{H}^k$-a.e. $x\in E_i$.

The following converse of Proposition 7 holds:

Theorem 8 Let $\mu$ be a Radon measure on $\mathbb R^n$ and $k$ be an integer. Assume that for $\mu$-a.e. $x\in \mathbb R^n$ there is a positive real $f(x_0)$ and a $k$-dimensional plane such that the measures $\mu_{x,r}$ as in \eqref{e:rescaled} converge in the weak$^\star$ topology to the measure $\mu$ of \eqref{e:app_tangent} as $r\downarrow 0$. Then $f$ coincides with a Borel function $\mu$-almost everywhere and there is a rectifiable $k$-dimensional set $E$ such that \eqref{e:misura} holds.

How to Cite This Entry:
Rectifiable set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rectifiable_set&oldid=27349