Namespaces
Variants
Actions

Difference between revisions of "Ramification theory of valued fields"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (links)
m (tex encoded by computer)
 
Line 1: Line 1:
A branch of [[Commutative algebra|commutative algebra]] and [[Number theory|number theory]] in which certain distinguished intermediate fields of algebraic extensions of fields equipped with a [[Valuation|valuation]] are considered. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100201.png" /> be a (not necessarily finite) algebraic extension of fields, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100202.png" /> be a valuation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100203.png" /> with valuation ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100204.png" /> and extending a valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100205.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100206.png" />. Assume that the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100207.png" /> is normal (cf. [[Extension of a field|Extension of a field]]) and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100208.png" /> is its [[Galois group|Galois group]]. The subgroup
+
<!--
 +
r1100201.png
 +
$#A+1 = 117 n = 0
 +
$#C+1 = 117 : ~/encyclopedia/old_files/data/R110/R.1100020 Ramification theory of valued fields
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r1100209.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002010.png" /> is called the decomposition group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002011.png" />, and its fixed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002012.png" /> the decomposition field. The subgroup
+
A branch of [[Commutative algebra|commutative algebra]] and [[Number theory|number theory]] in which certain distinguished intermediate fields of algebraic extensions of fields equipped with a [[Valuation|valuation]] are considered. Let  $  L \mid  K $
 +
be a (not necessarily finite) algebraic extension of fields, and let  $  w $
 +
be a valuation of  $  L $
 +
with valuation ring  $  {\mathcal O} _ {w} $
 +
and extending a valuation  $  v $
 +
of  $  K $.  
 +
Assume that the extension  $  L \mid  K $
 +
is normal (cf. [[Extension of a field|Extension of a field]]) and that  $  G = G ( L \mid  K ) $
 +
is its [[Galois group|Galois group]]. The subgroup
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002013.png" /></td> </tr></table>
+
$$
 +
G _ {Z} = \left \{ {\sigma \in G } : {w ( \sigma a ) = w ( a )  \textrm{ for  all  }  a \in L } \right \}
 +
$$
  
of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002014.png" /> is called the inertia group, and its fixed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002015.png" /> the inertia field. The subgroup
+
of $  G $
 +
is called the decomposition group of  $  w \mid  v $,  
 +
and its fixed field $  Z $
 +
the decomposition field. The subgroup
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002016.png" /></td> </tr></table>
+
$$
 +
G _ {T} = \left \{ {\sigma \in G } : {w ( \sigma a - a ) > 0 \textrm{ for  all  }  a \in {\mathcal O} _ {w} } \right \}
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002017.png" /></td> </tr></table>
+
of  $  G _ {Z} $
 +
is called the inertia group, and its fixed field  $  T $
 +
the inertia field. The subgroup
  
of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002018.png" /> is called the ramification group, and its fixed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002019.png" /> the ramification field. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002020.png" /> denotes the (unique) maximal [[Ideal|ideal]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002021.png" />, then the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002022.png" /> is equivalent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002023.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002024.png" /> is equivalent to
+
$$
 +
G _ {V} =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002025.png" /></td> </tr></table>
+
$$
 +
=  
 +
\left \{ {\sigma \in G } : {w ( \sigma a - a ) > w ( a )  \textrm{ for  all  }  a \in L,  a \neq 0 } \right \}
 +
$$
  
In number theory, also the higher ramification groups (cf. [[Ramified prime ideal|Ramified prime ideal]]) play a role; see [[#References|[a2]]]. If the value group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002026.png" /> is a subgroup of the real numbers and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002027.png" /> is a real number, then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002028.png" />th ramification group is defined to be
+
of  $  G _ {T} $
 +
is called the ramification group, and its fixed field  $  V $
 +
the ramification field. If  $  {\mathcal M} _ {w} $
 +
denotes the (unique) maximal [[Ideal|ideal]] of  $  {\mathcal O} _ {w} $,
 +
then the condition  $  w ( \sigma a - a ) > 0 $
 +
is equivalent to  $  \sigma a - a \in {\mathcal M} _ {w} $,
 +
and $  w ( \sigma a - a ) > w ( a ) $
 +
is equivalent to
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002029.png" /></td> </tr></table>
+
$$
 +
{
 +
\frac{\sigma a }{a}
 +
} - 1 \in {\mathcal M} _ {w} .
 +
$$
 +
 
 +
In number theory, also the higher ramification groups (cf. [[Ramified prime ideal|Ramified prime ideal]]) play a role; see [[#References|[a2]]]. If the value group  $  wL $
 +
is a subgroup of the real numbers and  $  s \geq  - 1 $
 +
is a real number, then the  $  s $
 +
th ramification group is defined to be
 +
 
 +
$$
 +
\left \{ {\sigma \in G } : {w ( \sigma a - a ) \geq  s + 1  \textrm{ for  all  }  a \in {\mathcal O} _ {w} } \right \} .
 +
$$
  
 
==Basic properties.==
 
==Basic properties.==
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002030.png" /> denote the characteristic of the residue field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002031.png" /> if it is a positive prime number; otherwise, set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002032.png" />. For simplicity, denote the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002033.png" /> to the intermediate fields again by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002034.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002035.png" /> is a [[Pro-p group|pro-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002036.png" />-group]]; in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002037.png" /> if the characteristic of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002038.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002039.png" />. The quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002040.png" /> of the respective value groups is a [[P-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002041.png" />-group]], and the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002042.png" /> of the respective residue fields is [[Purely inseparable extension|purely inseparable]] . <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002044.png" /> are normal subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002045.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002046.png" /> is a [[Normal subgroup|normal subgroup]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002047.png" />.
+
Let $  p $
 +
denote the characteristic of the residue field $  Lw $
 +
if it is a positive prime number; otherwise, set $  p = 1 $.  
 +
For simplicity, denote the restriction of $  w $
 +
to the intermediate fields again by $  w $.  
 +
Then $  G _ {V} $
 +
is a [[Pro-p group|pro- $  p $-
 +
group]]; in particular, $  L = V $
 +
if the characteristic of $  Lw $
 +
is 0 $.  
 +
The quotient group $  wL/wV $
 +
of the respective value groups is a [[P-group| $  p $-
 +
group]], and the extension $  Lw \mid  Vw $
 +
of the respective residue fields is [[Purely inseparable extension|purely inseparable]] . $  G _ {V} $
 +
and $  G _ {T} $
 +
are normal subgroups of $  G _ {Z} $,  
 +
and $  G _ {V} $
 +
is a [[Normal subgroup|normal subgroup]] of $  G _ {T} $.
  
The [[Galois group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002048.png" /> of the normal separable extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002049.png" /> is isomorphic to the character group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002050.png" />, which is (non-canonically) isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002051.png" /> if this group is finite. One has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002052.png" />, and the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002053.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002055.png" />-prime, i.e., no element has an order divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002056.png" />. Every finite quotient of the [[Profinite group|profinite group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002057.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002058.png" />-prime.
+
The [[Galois group]] $  G _ {T} /G _ {V} $
 +
of the normal separable extension $  V \mid  T $
 +
is isomorphic to the character group $  { \mathop{\rm Hom} } ( wL/vK,Lw  ^  \times  ) $,  
 +
which is (non-canonically) isomorphic to $  wV/wT $
 +
if this group is finite. One has $  Vw = Tw $,  
 +
and the group $  wV/wT $
 +
is $  p $-
 +
prime, i.e., no element has an order divisible by $  p $.  
 +
Every finite quotient of the [[Profinite group|profinite group]] $  G _ {T} /G _ {V} $
 +
is $  p $-
 +
prime.
  
The Galois group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002059.png" /> of the normal separable extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002060.png" /> is isomorphic to the Galois group of the normal extensions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002061.png" /> (which is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002062.png" />). Furthermore, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002063.png" /> is separable, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002064.png" />. The extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002065.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002066.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002067.png" /> is unique. The extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002068.png" /> is purely inseparable, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002069.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002070.png" />-group.
+
The Galois group $  G _ {Z} /G _ {T} $
 +
of the normal separable extension $  T \mid  Z $
 +
is isomorphic to the Galois group of the normal extensions $  Lw \mid  Kv $(
 +
which is $  Tw \mid  Zw $).  
 +
Furthermore, $  Tw \mid  Zw $
 +
is separable, and $  wT = wZ $.  
 +
The extension of $  w $
 +
from $  Z $
 +
to $  L $
 +
is unique. The extension $  Zw \mid  Kv $
 +
is purely inseparable, and $  wZ/vK $
 +
is a $  p $-
 +
group.
  
For many applications, it is more convenient to define the decomposition, inertia and ramification field to be the fixed field of the corresponding group in the maximal separable subextension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002071.png" />. Then one obtains the following additional properties: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002072.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002073.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002074.png" /> is the minimal subextension which admits a unique extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002075.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002076.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002077.png" /> is the maximal separable subextension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002078.png" />; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002079.png" /> is the maximal of all subgroups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002080.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002081.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002082.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002083.png" />-prime.
+
For many applications, it is more convenient to define the decomposition, inertia and ramification field to be the fixed field of the corresponding group in the maximal separable subextension of $  L \mid  K $.  
 +
Then one obtains the following additional properties: $  wZ = vK $;  
 +
$  Zw = Kv $;  
 +
$  Z $
 +
is the minimal subextension which admits a unique extension of $  w $
 +
to $  L $;  
 +
$  Tw \mid  Kv $
 +
is the maximal separable subextension of $  Lw \mid  Kv  $;  
 +
and $  wV $
 +
is the maximal of all subgroups $  \Gamma $
 +
of $  wL $
 +
for which $  \Gamma/vK $
 +
is $  p $-
 +
prime.
  
 
==Absolute ramification theory.==
 
==Absolute ramification theory.==
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002084.png" /> be any field with a valuation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002085.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002086.png" /> be some extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002087.png" /> to the separable-algebraic closure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002088.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002089.png" />. Then the intermediate fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002090.png" /> are called the absolute decomposition field, the absolute inertia field and the absolute ramification field, respectively. Since all extensions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002091.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002092.png" /> are conjugate, that is, of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002093.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002094.png" />, it follows that these fields are independent of the choice of the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002095.png" />, up to isomorphism over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002096.png" />. The absolute ramification field is the Henselization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002097.png" /> inside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002098.png" /> (see [[Henselization of a valued field|Henselization of a valued field]]); it coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r11002099.png" /> if and only if the extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020100.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020101.png" /> to every algebraic extension field is unique.
+
Let $  K $
 +
be any field with a valuation $  v $,  
 +
and let $  v  ^ {s} $
 +
be some extension of $  v $
 +
to the separable-algebraic closure $  K  ^ {s} $
 +
of $  K $.  
 +
Then the intermediate fields $  Z,T,V $
 +
are called the absolute decomposition field, the absolute inertia field and the absolute ramification field, respectively. Since all extensions of $  v $
 +
to $  K  ^ {s} $
 +
are conjugate, that is, of the form $  v \circ \sigma $
 +
for $  \sigma \in G ( K  ^ {s} \mid  K ) $,  
 +
it follows that these fields are independent of the choice of the extension $  v  ^ {s} $,  
 +
up to isomorphism over $  K $.  
 +
The absolute ramification field is the Henselization of $  ( K,v ) $
 +
inside $  ( K  ^ {s} ,v  ^ {s} ) $(
 +
see [[Henselization of a valued field|Henselization of a valued field]]); it coincides with $  K $
 +
if and only if the extension of $  v $
 +
from $  K $
 +
to every algebraic extension field is unique.
  
 
==Tame extensions and defectless fields.==
 
==Tame extensions and defectless fields.==
An extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020102.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020103.png" /> is called tamely ramified if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020104.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020105.png" />-prime and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020106.png" /> is separable. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020107.png" /> be Henselian. Then an extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020108.png" /> is called a tame extension if it is algebraic, tamely ramified and the [[Defect|defect]] of every finite subextension is trivial, that is, equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020109.png" />. The absolute ramification field is the unique maximal tame extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020110.png" />. If it is algebraically closed, or equivalently, if all algebraic extensions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020111.png" /> are tame extensions, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020112.png" /> is called a tame field; see also [[Model theory of valued fields|Model theory of valued fields]]. From the fact that every finite subextension in the absolute ramification field is defectless it follows that a non-trivial defect can only appear between the absolute ramification field and the algebraic closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020113.png" />. Since every finite subextension of this extension has as degree a power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020114.png" />, the defect must be a power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020115.png" />. This is the content of the Ostrowski lemma. In particular, the defect is always trivial if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020116.png" />, that is, if the characteristic of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020117.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r110/r110020/r110020118.png" />.
+
An extension $  ( L,w ) $
 +
of $  ( K,v ) $
 +
is called tamely ramified if $  wL/vK $
 +
is $  p $-
 +
prime and $  Lw \mid  Kv $
 +
is separable. Let $  ( K,v ) $
 +
be Henselian. Then an extension of $  ( K,v ) $
 +
is called a tame extension if it is algebraic, tamely ramified and the [[Defect|defect]] of every finite subextension is trivial, that is, equal to $  1 $.  
 +
The absolute ramification field is the unique maximal tame extension of $  ( K,v ) $.  
 +
If it is algebraically closed, or equivalently, if all algebraic extensions of $  ( K,v ) $
 +
are tame extensions, then $  ( K,v ) $
 +
is called a tame field; see also [[Model theory of valued fields|Model theory of valued fields]]. From the fact that every finite subextension in the absolute ramification field is defectless it follows that a non-trivial defect can only appear between the absolute ramification field and the algebraic closure of $  K $.  
 +
Since every finite subextension of this extension has as degree a power of $  p $,  
 +
the defect must be a power of $  p $.  
 +
This is the content of the Ostrowski lemma. In particular, the defect is always trivial if $  p = 1 $,  
 +
that is, if the characteristic of $  Kv $
 +
is 0 $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  O. Endler,  "Valuation theory" , Springer  (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.P. Serre,  "Corps locaux" , Hermann  (1962)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  O. Endler,  "Valuation theory" , Springer  (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.P. Serre,  "Corps locaux" , Hermann  (1962)</TD></TR></table>

Latest revision as of 08:09, 6 June 2020


A branch of commutative algebra and number theory in which certain distinguished intermediate fields of algebraic extensions of fields equipped with a valuation are considered. Let $ L \mid K $ be a (not necessarily finite) algebraic extension of fields, and let $ w $ be a valuation of $ L $ with valuation ring $ {\mathcal O} _ {w} $ and extending a valuation $ v $ of $ K $. Assume that the extension $ L \mid K $ is normal (cf. Extension of a field) and that $ G = G ( L \mid K ) $ is its Galois group. The subgroup

$$ G _ {Z} = \left \{ {\sigma \in G } : {w ( \sigma a ) = w ( a ) \textrm{ for all } a \in L } \right \} $$

of $ G $ is called the decomposition group of $ w \mid v $, and its fixed field $ Z $ the decomposition field. The subgroup

$$ G _ {T} = \left \{ {\sigma \in G } : {w ( \sigma a - a ) > 0 \textrm{ for all } a \in {\mathcal O} _ {w} } \right \} $$

of $ G _ {Z} $ is called the inertia group, and its fixed field $ T $ the inertia field. The subgroup

$$ G _ {V} = $$

$$ = \left \{ {\sigma \in G } : {w ( \sigma a - a ) > w ( a ) \textrm{ for all } a \in L, a \neq 0 } \right \} $$

of $ G _ {T} $ is called the ramification group, and its fixed field $ V $ the ramification field. If $ {\mathcal M} _ {w} $ denotes the (unique) maximal ideal of $ {\mathcal O} _ {w} $, then the condition $ w ( \sigma a - a ) > 0 $ is equivalent to $ \sigma a - a \in {\mathcal M} _ {w} $, and $ w ( \sigma a - a ) > w ( a ) $ is equivalent to

$$ { \frac{\sigma a }{a} } - 1 \in {\mathcal M} _ {w} . $$

In number theory, also the higher ramification groups (cf. Ramified prime ideal) play a role; see [a2]. If the value group $ wL $ is a subgroup of the real numbers and $ s \geq - 1 $ is a real number, then the $ s $ th ramification group is defined to be

$$ \left \{ {\sigma \in G } : {w ( \sigma a - a ) \geq s + 1 \textrm{ for all } a \in {\mathcal O} _ {w} } \right \} . $$

Basic properties.

Let $ p $ denote the characteristic of the residue field $ Lw $ if it is a positive prime number; otherwise, set $ p = 1 $. For simplicity, denote the restriction of $ w $ to the intermediate fields again by $ w $. Then $ G _ {V} $ is a pro- $ p $- group; in particular, $ L = V $ if the characteristic of $ Lw $ is $ 0 $. The quotient group $ wL/wV $ of the respective value groups is a $ p $- group, and the extension $ Lw \mid Vw $ of the respective residue fields is purely inseparable . $ G _ {V} $ and $ G _ {T} $ are normal subgroups of $ G _ {Z} $, and $ G _ {V} $ is a normal subgroup of $ G _ {T} $.

The Galois group $ G _ {T} /G _ {V} $ of the normal separable extension $ V \mid T $ is isomorphic to the character group $ { \mathop{\rm Hom} } ( wL/vK,Lw ^ \times ) $, which is (non-canonically) isomorphic to $ wV/wT $ if this group is finite. One has $ Vw = Tw $, and the group $ wV/wT $ is $ p $- prime, i.e., no element has an order divisible by $ p $. Every finite quotient of the profinite group $ G _ {T} /G _ {V} $ is $ p $- prime.

The Galois group $ G _ {Z} /G _ {T} $ of the normal separable extension $ T \mid Z $ is isomorphic to the Galois group of the normal extensions $ Lw \mid Kv $( which is $ Tw \mid Zw $). Furthermore, $ Tw \mid Zw $ is separable, and $ wT = wZ $. The extension of $ w $ from $ Z $ to $ L $ is unique. The extension $ Zw \mid Kv $ is purely inseparable, and $ wZ/vK $ is a $ p $- group.

For many applications, it is more convenient to define the decomposition, inertia and ramification field to be the fixed field of the corresponding group in the maximal separable subextension of $ L \mid K $. Then one obtains the following additional properties: $ wZ = vK $; $ Zw = Kv $; $ Z $ is the minimal subextension which admits a unique extension of $ w $ to $ L $; $ Tw \mid Kv $ is the maximal separable subextension of $ Lw \mid Kv $; and $ wV $ is the maximal of all subgroups $ \Gamma $ of $ wL $ for which $ \Gamma/vK $ is $ p $- prime.

Absolute ramification theory.

Let $ K $ be any field with a valuation $ v $, and let $ v ^ {s} $ be some extension of $ v $ to the separable-algebraic closure $ K ^ {s} $ of $ K $. Then the intermediate fields $ Z,T,V $ are called the absolute decomposition field, the absolute inertia field and the absolute ramification field, respectively. Since all extensions of $ v $ to $ K ^ {s} $ are conjugate, that is, of the form $ v \circ \sigma $ for $ \sigma \in G ( K ^ {s} \mid K ) $, it follows that these fields are independent of the choice of the extension $ v ^ {s} $, up to isomorphism over $ K $. The absolute ramification field is the Henselization of $ ( K,v ) $ inside $ ( K ^ {s} ,v ^ {s} ) $( see Henselization of a valued field); it coincides with $ K $ if and only if the extension of $ v $ from $ K $ to every algebraic extension field is unique.

Tame extensions and defectless fields.

An extension $ ( L,w ) $ of $ ( K,v ) $ is called tamely ramified if $ wL/vK $ is $ p $- prime and $ Lw \mid Kv $ is separable. Let $ ( K,v ) $ be Henselian. Then an extension of $ ( K,v ) $ is called a tame extension if it is algebraic, tamely ramified and the defect of every finite subextension is trivial, that is, equal to $ 1 $. The absolute ramification field is the unique maximal tame extension of $ ( K,v ) $. If it is algebraically closed, or equivalently, if all algebraic extensions of $ ( K,v ) $ are tame extensions, then $ ( K,v ) $ is called a tame field; see also Model theory of valued fields. From the fact that every finite subextension in the absolute ramification field is defectless it follows that a non-trivial defect can only appear between the absolute ramification field and the algebraic closure of $ K $. Since every finite subextension of this extension has as degree a power of $ p $, the defect must be a power of $ p $. This is the content of the Ostrowski lemma. In particular, the defect is always trivial if $ p = 1 $, that is, if the characteristic of $ Kv $ is $ 0 $.

References

[a1] O. Endler, "Valuation theory" , Springer (1972)
[a2] J.P. Serre, "Corps locaux" , Hermann (1962)
How to Cite This Entry:
Ramification theory of valued fields. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ramification_theory_of_valued_fields&oldid=39688
This article was adapted from an original article by F.-V. Kuhlmann (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article