Namespaces
Variants
Actions

Rabinowitsch trick

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

This "trick" deduces the general Hilbert Nullstellensatz (cf. Hilbert theorem) from the special case that the polynomials have no common zeros. Indeed, let $f , f _ { 1 } , \dots , f _ { m } \in R : = k [ x _ { 1 } , \dots , x _ { n } ]$, where $k$ is a field. If $f$ vanishes on the common zeros of $f _ { 1 } , \ldots , f _ { m }$, then there are polynomials $a _ { 0 } , a _ { 1 } , \dots , a _ { m } \in R [ x _ { 0 } ]$ such that

\begin{equation*} a _ { 0 } ( 1 - x _ { 0 } f ) + a _ { 1 } f _ { 1 } + \ldots + a _ { m } f _ { m } = 1. \end{equation*}

Substitution of $x _ { 0 } = 1 / f$ into this identity and clearing out the denominator shows that

\begin{equation*} b _ { 1 } f _ { 1 } + \ldots + b _ { m } f _ { m } = f ^ { \mu }, \end{equation*}

where $\mu : = \operatorname { max } \operatorname { deg } _ { x _ { 0 } } a _ { i }$ and $b _ { j } = a _ { j } |_{x _ { 0 } = 1 / f} f ^ { \mu }$. This ingenious device was published in the one(!) page article [a1].

References

[a1] J.L. Rabinowitsch, "Zum Hilbertschen Nullstellensatz" Math. Ann. , 102 (1929) pp. 520,}
How to Cite This Entry:
Rabinowitsch trick. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rabinowitsch_trick&oldid=50370
This article was adapted from an original article by W. Dale Brownawell (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article