# Quasi-metric

From Encyclopedia of Mathematics

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Let $\mathbb X$ be a nonempty set. A function $d:\mathbb{X}\times\mathbb{X}\to[0,\infty)$ which satisfies the following conditions for all $x,y\in\mathbb X$

1) $d(x,y)=0$ if and only if $x = y$ (the identity axiom);

2) $d(x,y) + d(y,z) \geq d(x,z)$ (the triangle axiom);

is called a quasi-metric. A pair $(\mathbb X, d)$ is a quasi-metric space.

The difference between a metric and a quasi-metric is that a quasi-metric does not possess the symmetry axiom (in the case we allow $d(x,y)\ne d(y,x)$ for some $x,y\in \mathbb X$ ).

### Reference

[Sch] | V. Schroeder, "Quasi-metric and metric spaces". Conform. Geom. Dyn. 10, 355 - 360 (2006) Zbl 1113.54014 |

[Wil] | W. A. Wilson, "On Quasi-Metric Spaces". American Journal of Mathematics Vol. 53, No. 3 (1931), pp. 675-684 Zbl 0002.05503 |

**How to Cite This Entry:**

Quasi-metric.

*Encyclopedia of Mathematics.*URL: http://encyclopediaofmath.org/index.php?title=Quasi-metric&oldid=37708