Namespaces
Variants
Actions

Quasi-equivalent representations

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Two unitary representations (cf. Unitary representation) $ \pi _ {1} , \pi _ {2} $ of a group $ X $( or symmetric representations of a symmetric algebra $ X $) in Hilbert spaces $ H _ {1} $ and $ H _ {2} $, respectively, satisfying one of the following four equivalent conditions: 1) there exist unitarily-equivalent representations $ \rho _ {1} $ and $ \rho _ {2} $ such that $ \rho _ {1} $ is a multiple of $ \pi _ {1} $ and $ \rho _ {2} $ is a multiple of $ \pi _ {2} $; 2) the non-zero subrepresentations of $ \pi _ {1} $ are not disjoint from $ \pi _ {2} $, and the non-zero subrepresentations of $ \pi _ {2} $ are not disjoint from $ \pi _ {1} $; 3) $ \pi _ {2} $ is unitarily equivalent to a subrepresentation of some multiple representation $ \rho _ {1} $ of $ \pi _ {1} $ that has unit central support; or 4) there exists an isomorphism $ \Phi $ of the von Neumann algebra generated by the set $ \pi _ {1} ( X) $ onto the von Neumann algebra generated by the set $ \pi _ {2} ( X) $ such that $ \Phi ( \pi _ {1} ( x) ) = \pi _ {2} ( x) $ for all $ x \in X $. Unitarily-equivalent representations are quasi-equivalent representations; irreducible quasi-equivalent representations (cf. Irreducible representation) are unitarily equivalent. If $ \pi _ {1} $ and $ \pi _ {2} $ are quasi-equivalent representations and $ \pi _ {1} $ is a factor representation, then so is $ \pi _ {2} $; a factor representation and a non-zero subrepresentation of it are quasi-equivalent representations; two factor representations are either disjoint or quasi-equivalent. The notion of quasi-equivalent representations leads to that of a quasi-dual object and a quasi-spectrum for locally compact groups and symmetric algebras, respectively.

References

[1] J. Dixmier, " algebras" , North-Holland (1977) (Translated from French)

Comments

Two representations $ \pi $ and $ \pi ^ \prime $( of a group or algebra) with representation spaces $ H $ and $ H ^ \prime $, respectively, are said to be disjoint is there is no non-zero intertwining operator between $ \pi $ and $ \pi ^ \prime $. Here, an intertwining operator between $ \pi $ and $ \pi ^ \prime $ is a continuous linear operator $ T : H \rightarrow H ^ \prime $ such that $ T \pi ( x) = \pi ^ \prime T ( x) $ for all $ x $.

How to Cite This Entry:
Quasi-equivalent representations. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-equivalent_representations&oldid=48381
This article was adapted from an original article by A.I. Shtern (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article