Namespaces
Variants
Actions

Quantum groups

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The phrase "quantum group" is more or less a synonym for "Hopf algebra" . More precisely, the category of quantum groups is defined in [a1] to be dual to the category of Hopf algebras. This is natural for the following reason. There is the following general principle: The functor $ X \mapsto \{ \textrm{ the algebra of functions on } X \} $ is an anti-equivalence between the category of "spaces" and the category of commutative associative unital algebras, perhaps with some additional structures or properties (this principle becomes a theorem if "space" is understood to be "affine scheme" or "compact topological space" , and "algebra" is understood to mean "C*-algebra" ). So one can translate the definition of a group into the language of algebras: instead of a space $ G $ with an associative operation $ G \times G \rightarrow G $ one obtains a commutative algebra $ A $ over a commutative ring $ k $ with a homomorphism $ \Delta : \ A \rightarrow A \otimes A $ , called comultiplication; the unit $ e \in G $ gives rise to a homomorphism $ \epsilon : \ A \rightarrow k $ , called co-unit, and the mapping $ g \mapsto g ^{-1} $ , $ g \in G $ , gives rise to a bijective $ k $ - linear mapping $ S : \ A \rightarrow A \otimes A $ , called antipode. The group axioms are equivalent to the commutativity of the following diagrams: $$ \begin{array}{crcrl} & & {A \otimes A} & & \\ {} &\nearrow ^ \Delta & &\searrow ^ { \mathop{\rm id} \otimes \Delta} &{} \\ A &{} &{} &{} & {A \otimes A \otimes A} \\ {} &\searrow _ \Delta & &\nearrow _ {\Delta \otimes \mathop{\rm id}} &{} \\ & & {A \otimes A} & & \\ \end{array} $$


$$ \begin{array}{ccc} A & \stackrel{ { \mathop{\rm id}\nolimits}} \rightarrow & A \\ {\scriptsize \Delta} \downarrow &{} &\| \\ {A \otimes A} & \stackrel { \mathop{\rm id}\otimes\epsilon}\rightarrow &{A \otimes k} \\ \end{array} \qquad\qquad \begin{array}{ccc} A & \stackrel{ { \mathop{\rm id}\nolimits}} \rightarrow & A \\ {\scriptsize \Delta} \downarrow &{} &\| \\ {A \otimes A} & \stackrel {\epsilon \otimes \mathop{\rm id} } \rightarrow &{k \otimes A} \\ \end{array} $$


$$ \begin{array}{ccccc} A & \stackrel \Delta \rightarrow A \otimes A &\stackrel{ { \mathop{\rm id} \otimes S}} \rightarrow &A \otimes A \stackrel{m}\rightarrow & A \\ {} &\searrow _ \epsilon &{} &\nearrow _{i} &{} \\ {} &{} & k &{} &{} \\ \end{array} $$

$$ \begin{array}{ccccc} A & \stackrel \Delta \rightarrow A \otimes A & \stackrel{ {S \otimes \mathop{\rm id}}} \rightarrow &A \otimes A \stackrel{m}\rightarrow & A \\ {} &\searrow _ \epsilon &{} &\nearrow _{i} &{} \\ {} &{} & k &{} &{} \\ \end{array} $$

Here $ m(a \otimes b) = ab $ , $ i(c) = c \cdot 1 _{A} $ . The commutativity of these diagrams means that $ (A ,\ \Delta ,\ \epsilon ,\ S ) $ is a commutative Hopf algebra. Since the category of groups is anti-equivalent to the category of commutative Hopf algebras, it is natural to define a quantum group as an object of the category dual to the category of (not necessarily commutative) Hopf algebras.

A simple class of non-commutative Hopf algebras is formed by the group algebras of non-commutative groups. These Hopf algebras are commutative, i.e. $ \Delta (A) $ is contained in the symmetric part of $ A \otimes A $ . Essentially, all cocommutative Hopf algebras are group algebras.

Here is an example of a Hopf algebra which is neither commutative nor cocommutative. Fix $ n \in \mathbf N $ and $ q \in k $ , where $ k $ is a commutative ring. Denote by $ A $ the associative $ k $ - algebra with generators $ x _{ij} $ , $ 1 \leq i,\ j \leq n $ , and defining relations $ x _{ij} x _{il} = q x _{il} x _{ij} $ if $ j < l $ , $ x _{ij} x _{kj} = q x _{kj} x _{ij} $ if $ i < k $ , $ x _{il} x _{kj} = x _{kj} x _{il} $ if $ i < k $ , $ l > j $ , $ [ x _{il} ,\ x _{kj} ] = (q ^{-1} -q) x _{ij} x _{kl} $ if $ i > k $ , $ l > j $ , $ \sum _ {i _{1} \dots i _{n}} x _ {1i _{1}} \dots x _ {ni _{n}} \cdot (-q) ^ {l(i _{1} \dots i _{n} )} = 1 $ , where $ l ( i _{1} \dots i _{n} ) $ is the number of inversions in the permutation $ ( i _{1} \dots i _{n} ) $ . Then $ A $ has a Hopf algebra structure defined by $ \Delta (x _{ij} ) = \sum _{k} x _{ik} \otimes x _{kj} $ . If $ q =1 $ , then $ A $ is the algebra of polynomial functions on $ \mathop{\rm SL}\nolimits (n) $ . So, in the general case it is natural to consider elements of $ A $ as "functions on the quantized SLn" .

The quantized $ \mathop{\rm SL}\nolimits (n) $ is one of the simplest quantum groups which appear naturally in the theory of quantum integrable systems and, especially, in the quantum inverse-scattering method [a2]. The development of this method has led to the following quantization technique for constructing non-commutative non-cocommutative Hopf algebras. It is natural to construct them as deformations of commutative Hopf algebras. If a non-commutative deformation $ A $ of a commutative Hopf algebra $ A _{0} $ is given, then a Poisson bracket on $ A _{0} $ is defined by $ \{ a,\ b \} = \mathop{\rm lim}\nolimits _ {h \rightarrow 0} \ h ^{-1} (ab-ba) $ , where $ h $ is the deformation parameter and $ ab $ means the deformed product, which is not commutative. This Poisson bracket has the usual properties (skew-symmetry, Jacobi identity, $ \{ a,\ bc \} = \{ a,\ b \} c + \{ a,\ c \} b $ ) and is compatible with comultiplication. In other words, $ A _{0} $ is a Poisson–Hopf algebra. Therefore it is natural to start with a Poisson–Hopf algebra $ A _{0} $ and then try to quantize it, i.e. to construct a Hopf algebra deformation of $ A _{0} $ which induces the given Poisson bracket on $ A _{0} $ .


Technically it is more convenient to deform not commutative Hopf algebras but cocommutative ones and to start not with a Poisson–Hopf algebra (or a Poisson–Lie group [a1], which is more or less the same) but with its infinitesimal version, called a Lie bi-algebra . A Lie bi-algebra is a Lie algebra $ \mathfrak g $ with a linear mapping $ \phi : \ \mathfrak g \rightarrow \mathfrak g \otimes \mathfrak g $ such that: 1) $ \phi ^{*} : \ \mathfrak g ^{*} \otimes \mathfrak g ^{*} \rightarrow \mathfrak g ^{*} $ defines a Lie algebra structure on $ \mathfrak g ^{*} $ ; and 2) $ \phi $ is a $ 1 $ - cocycle ($ \mathfrak g $ acts on $ \mathfrak g \otimes \mathfrak g $ by means of the adjoint representation). By definition, a quantization of $ ( \mathfrak g ,\ \phi ) $ is a Hopf algebra deformation of the universal enveloping algebra $ U \mathfrak g $ such that $ \delta \mid _ {\mathfrak g} = \phi $ , where $ \delta : \ U \mathfrak g \rightarrow U \mathfrak g \otimes U \mathfrak g $ is the Poisson cobracket, defined by $ \delta (a) = \mathop{\rm lim}\nolimits _ {h \rightarrow 0} \ h ^{-1} ( \Delta (a) - \Delta ^ \prime (a)) $ . Here $ h $ is the deformation parameter, $ \Delta $ the deformed comultiplication and $ \Delta ^ \prime $ the opposite comultiplication.

It is not known whether every Lie bi-algebra can be quantized, and usually quantization is not unique. But in several important cases (cf. [a1], §3, §6) there exists a canonical quantization. In particular, on a Kac–Moody algebra $ \mathfrak g $ with a fixed scalar product $ ( \ ,\ ) $ there is a canonical Lie bi-algebra structure and this bi-algebra has a canonical quantization $ U _{h} \mathfrak g $ , as was discovered in [a3], [a4], [a5]. Let $ \mathfrak h $ be the Cartan subalgebra of $ \mathfrak g $ , $ H _{i} \in \mathfrak g $ the images of the simple roots $ \alpha _{i} \in \mathfrak h ^{*} $ . Then $ U _{h} \mathfrak g $ is generated by $ \mathfrak h $ and $ X _{i} ^{+} $ , $ X _{i} ^{-} $ with the following defining relations:$$ [a _{1} ,\ a _{2} ] = 0 \textrm{ for } a _{1} ,\ a _{2} \in \mathfrak h ; $$ $$ [a ,\ X _{i} ^ \pm ] = \pm \alpha _{i} (a ) X _{i} ^ \pm \textrm{ for } a \in \mathfrak h ; $$ $$ [ X _{i} ^{+} ,\ X _{j} ^{-} ] = 2 \delta _{ij} h ^{-1} \ \mathop{\rm sinh}\nolimits ( h H _{i} / 2) . $$ Setting $ n = 1-A _{ij} $ , $ q = \mathop{\rm exp}\nolimits \ h (H _{i} ,\ H _{j} )/2 $ one has also$$ \sum _{k=0} ^ n (-1) ^{k} \binom{n}{k} _{q} q ^ {-k(n-k)/2} (X _{i} ^ \pm ) ^{k} \cdot X _{j} ^ \pm \cdot (X _{i} ^ \pm ) ^{n-k} = 0 . $$ Here $ (A _{ij} ) $ is the Cartan matrix and $ ( {} _{k} ^{n} ) _{q} $ is the Gauss polynomial, i.e.,$$ \binom{n}{k} _{q} = \frac{(q ^{n} -1 ) \dots (q ^{n-k+1} -1)}{( q ^{k} -1 ) \dots (q-1)} . $$ The comultiplication in $ U _{h} \mathfrak g $ is such that $ \Delta (a) = a \otimes 1 + 1 \otimes a $ for $ a \in \mathfrak h $ and$$ \Delta (X _{i} ^ \pm ) = X _{i} ^ \pm \otimes \mathop{\rm exp}\nolimits \left ( \frac{hH _{i}}{4} \right ) + \mathop{\rm exp}\nolimits \left ( \frac{-hH _{i}}{4} \right ) \otimes X _{i} ^ \pm . $$ If $ \mathfrak g $ is a finite-dimensional simple Lie algebra (cf. Lie algebra, semi-simple), then the algebra of regular functions on the corresponding simply-connected algebraic group $ G $ is isomorphic to the subalgebra of $ ( U \mathfrak g ) ^{*} $ generated by the matrix elements of the finite-dimensional representations of $ U \mathfrak g $ . Therefore the subalgebra of $ ( U _{h} \mathfrak g ) ^{*} $ generated by the matrix elements of the finite-dimensional representations of $ U \mathfrak g $ can be considered as the algebra of functions on a certain quantization of $ G $ . For instance, the quantized $ \mathop{\rm SL}\nolimits ( n ) $ ( cf. above) can be obtained in this way.

There is an important notion of a quasitriangular Hopf algebra. This is a pair $ (A,\ R) $ where $ A $ is a Hopf algebra and $ R $ is an invertible element of $ A \otimes A $ such that $ ( \Delta \otimes \mathop{\rm id}\nolimits ) (R) = R ^{13} R ^{23} $ , $ ( \mathop{\rm id}\nolimits \otimes \Delta )(R) = R ^{13} R ^{12} $ , $ \Delta ^ \prime (a) = R \cdot \Delta ( a ) \cdot R ^{-1} $ for $ a \in A $ . Here $ \Delta ^ \prime $ is the opposite comultiplication and $ R ^{12} $ , $ R ^{13} $ , $ R ^{23} $ are defined as follows: If $ R = \sum _{i} x _{i} \otimes y _{i} $ , where $ x _{i} ,\ y _{i} \in A $ , then $ R ^{12} = \sum _{i} x _{i} \otimes y _{i} \otimes 1 $ , $ R ^{13} = \sum _{i} x _{i} \otimes 1 \otimes y _{i} $ , $ R ^{23} = \sum _{i} 1 \otimes x _{i} \otimes y _{i} $ . If $ (A,\ R ) $ is a quasitriangular Hopf algebra, then $ R $ satisfies the quantum Yang–Baxter equation (cf. also Yang–Baxter equation), i.e., $ R ^{12} R ^{13} R ^{23} = R ^{23} R ^{13} R ^{12} $ . It is known (cf. [a1], §13) that if $ \mathfrak g $ is a finite-dimensional simple Lie algebra, then $ U _{h} \mathfrak g $ has a canonical quasitriangular structure, while if $ \mathfrak g $ is an infinite-dimensional Kac–Moody algebra, then $ U _{h} \mathfrak g $ has an "almost quasitriangular" structure.

If $ (A,\ R) $ is a quasitriangular Hopf algebra over $ k $ and $ \rho $ is a representation $ A \rightarrow \mathop{\rm Mat}\nolimits (n,\ k) $ , then $ {\mathcal R} = ( \rho \otimes \rho )(R) \in \mathop{\rm End}\nolimits (k ^{n} \otimes k ^{n} ) $ satisfies the quantum Yang–Baxter equation. There is an inverse construction (cf. [a6], [a7]), which goes back to the quantum inverse-scattering method: to a matrix solution of the quantum Yang–Baxter equation satisfying a non-degeneracy condition there corresponds a Hopf algebra. Without this condition one can only construct an associative bi-algebra (the difference between a Hopf algebra and an associative bi-algebra is that in the second case there may be no antipode). This bi-algebra is generated by elements $ t _{ij} $ , $ 1 \leq i,\ j \leq n $ , with defining relations $ {\mathcal R} T _{1} T _{2} = T _{2} T _{1} {\mathcal R} $ , where $ T _{1} = T \otimes 1 \in \mathop{\rm End}\nolimits (k ^{n} \otimes k ^{n} ) $ , $ T _{2} = 1 \otimes T \in \mathop{\rm End}\nolimits (k ^{n} \otimes k ^{n} ) $ , $ T $ is the matrix $ (t _{ij} ) $ , and $ \Delta $ is defined by $ \Delta (t _{ij} ) = \sum _{k} t _{ik} \otimes t _{kj} $ .


Quasitriangular Hopf algebras are a natural tool for the quantum inverse-scattering in method ([a1], §11). On the other hand, they can be used (cf. [a8]) to construct invariants of knots (and of more general objects such as links and tangles) generalizing the Jones polynomial [a9]. More precisely, to an oriented knot $ \gamma \subset \mathbf R ^{3} $ and a quasitriangular Hopf algebra $ (A ,\ R) $ there corresponds a central element $ z _ \gamma \in A $ .


The usual notion of a group has several versions: abstract group, Lie group, topological group, etc. The same is true for quantum groups. The quantum analogue of the notion of a compact group was introduced in [a10] (the idea is to use $ C ^{*} $ - algebras instead of abstract algebras). The quantized $ \mathop{\rm SU}\nolimits (2) $ ( cf. [a11], [a12]) is a typical example. The notion of a ring group (cf. , [a14]) and the equivalent notion of a Kac algebra (cf. [a15], [a16]) were introduced as an attempt to define a locally compact quantum group. However, these notions are not general enough (the axioms of , [a14], [a15] imply that the square of the antipode is the identity mapping, and therefore the quantized $ \mathop{\rm SU}\nolimits (2) $ is not a ring group).

References

[a1] V.G. Drinfel'd, "Quantum groups" , Proc. Internat. Congress Mathematicians (Berkeley, 1986) , 1 , Amer. Math. Soc. (1987) pp. 798–820 Zbl 0667.16003
[a2] L.D. Faddeev, "Integrable models in ()-dimensional quantum field theory" , Lectures in Les Houches, 1982 , Session 39 , Elsevier (1984) pp. 563–608 MR782509
[a3] M. Jimbo, "Quantum -matrix for the generalized Toda system" Comm. Math. Phys. , 102 (1986) pp. 537–547 MR824090
[a4] M. Jimbo, "A -difference analogue of and the Yang–Baxter equation" Letters Math. Phys. , 10 (1985) pp. 63–69 MR797001
[a5] V.G. Drinfel'd, "Hopf algebras and the quantum Yang–Baxter equation" Soviet Math. Dokl. , 32 (1985) pp. 254–258 Dokl. Akad. Nauk SSSR , 283 : 5 (1985) pp. 1060–1064 Zbl 0588.17015
[a6] V.V. Lyubashenko, "Hopf algebras and vector symmetries" Russian Math. Surveys , 41 : 5 (1986) pp. 153–154 Uspekhi Mat. Nauk , 41 : 5 (1986) pp. 185–186 MR0878344 Zbl 0649.16008
[a7] L.D. Faddeev, N.Yu. Reshetikhin, L.A. Takhtayan, "Quantization of Lie groups and Lie algebras" Algebra and Analysis , 1 : 1 (1989) pp. 178–206 (In Russian) MR1015339 Zbl 0677.17010
[a8] N.Yu. Reshetikhin, "Quasitriangular Hopf algebras and invariants of tangles" Algebra and Analysis , 1 : 2 (1989) pp. 169–188 (In Russian) Zbl 0715.17016
[a9] V.F.R. Jones, "A polynomial invariant for knots via von Neumann algebras" Bulletin Amer. Math. Soc. , 12 (1985) pp. 103–112 MR0766964 Zbl 0564.57006
[a10] S.L. Woronowich, "Compact matrix pseudogroups" Comm. Math. Phys. , 111 (1987) pp. 613–665
[a11] S.L. Woronowich, "Twisted SU(2) group. An example of a noncommutative differential calculus" Publ. RIMS , 23 (1987) pp. 117–181
[a12] L.L. Vaksman, Ya.S. Soibelman, "Function algebra on the quantum group SU(2)" Funct. Anal. Appl. , 22 : 3 (1988) pp. 170–181 Funksional. Anal. Prilozhen. , 22 : 3 (1988) pp. 1–14
[a13a] G.I. Kac, "Ring groups and the duality principle I" Trans. Moscow Math. Soc. , 12 (1963) pp. 291–339 Trudy Moskov. Mat. Obshch. , 12 (1963) pp. 295–301
[a13b] G.I. Kac, "Ring groups and the duality principle II" Trans. Moscow Math. Soc. , 13 (1965) pp. 94–126 Trudy Moskov. Mat. Obshch. , 13 (1965) pp. 84–113 Zbl 0162.45101 Zbl 0144.37903
[a14] G.I. Kac, L.I. Vainerman, "Nonunimodular ring groups and Hopf–von Neumann algebras" Math. USSR Sb. , 23 (1974) pp. 185–214 Mat. Sb. , 94 : 2 (1974) pp. 194–225; 335 MR0348038
[a15] M. Enock, J.-M. Schwartz, "Une dualité dans les algèbres de von Neumann" Bull. Soc. Math. France , 44 (1975) pp. 1–44 MR0442710 Zbl 0343.46044
[a16] J.-M. Schwartz, "Relations entre "ring groups" et algèbres de Kac" Bull. Sci. Math. (2) , 100 (1976) pp. 289–300 MR0473094 Zbl 0343.46043
How to Cite This Entry:
Quantum groups. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quantum_groups&oldid=44258
This article was adapted from an original article by V.G. Drinfel'd (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article