Namespaces
Variants
Actions

Difference between revisions of "Pseudo-local tomography"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 68 formulas out of 70 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301401.png" /> be a piecewise smooth, compactly supported function, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301402.png" />. The [[Radon transform|Radon transform]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301403.png" /> is defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301404.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301405.png" /> is a straight line parametrized by a unit vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301406.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301407.png" /> is the unit circle in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301408.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301409.png" />. By definition, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014010.png" />. By local tomographic data one means the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014011.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014013.png" /> satisfying the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014015.png" /> is a given point and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014016.png" /> is a small number. Thus, local tomographic data are the line integrals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014017.png" /> for the lines intersecting the  "region of interest" , the disc centred at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014018.png" /> of radius <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014019.png" /> (cf. also [[Local tomography|Local tomography]]; [[Tomography|Tomography]]).
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,  
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
It is not possible, in general, to find <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014020.png" /> from the local tomographic data [[#References|[a2]]]. What practically useful information about <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014021.png" /> can one get from these data? Information, very useful practically, is the location of discontinuity curves of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014022.png" /> and the sizes of the jumps of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014023.png" /> across these curves.
+
Out of 70 formulas, 68 were replaced by TEX code.-->
 +
 
 +
{{TEX|semi-auto}}{{TEX|partial}}
 +
Let $f ( x )$ be a piecewise smooth, compactly supported function, $x \in \mathbf R ^ { 2 }$. The [[Radon transform|Radon transform]] $\widehat { f } ( \alpha , p ) : = R f$ is defined by the formula $\hat { f } ( \alpha , p ) = \int _ { \operatorname { l_ {\alpha p} } } f ( x ) d s$, where $\text{l} _ { \alpha p}  : = \{ x : \alpha \cdot x = p \}$ is a straight line parametrized by a unit vector $\alpha \in S ^ { 1 }$, $S ^ { 1 }$ is the unit circle in $\mathbf{R} ^ { 2 }$ and $p \in \mathbf R _ { + } : = [ 0 , \infty )$. By definition, $\widehat { f } ( - \alpha , - p ) = \widehat { f } ( \alpha , p )$. By local tomographic data one means the values of $\hat { f } ( \alpha , p )$ for $\alpha$ and $p$ satisfying the condition $| \alpha . x _ { 0 } - p | &lt; \rho$, where $x _ { 0 }$ is a given point and $p &gt; 0$ is a small number. Thus, local tomographic data are the line integrals of $f ( x )$ for the lines intersecting the  "region of interest" , the disc centred at $x _ { 0 }$ of radius $\rho$ (cf. also [[Local tomography|Local tomography]]; [[Tomography|Tomography]]).
 +
 
 +
It is not possible, in general, to find $f ( x _ { 0 } )$ from the local tomographic data [[#References|[a2]]]. What practically useful information about $f ( x )$ can one get from these data? Information, very useful practically, is the location of discontinuity curves of $f ( x )$ and the sizes of the jumps of $f ( x )$ across these curves.
  
 
Pseudo-local tomography solves the problem of finding the above information from the local tomographic data.
 
Pseudo-local tomography solves the problem of finding the above information from the local tomographic data.
Line 7: Line 15:
 
This is done by computing the pseudo-local tomography function, introduced in [[#References|[a2]]]:
 
This is done by computing the pseudo-local tomography function, introduced in [[#References|[a2]]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014024.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
+
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014024.png"/></td> <td style="width:5%;text-align:right;" valign="top">(a1)</td></tr></table>
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014025.png" />. The inversion formula reads:
+
where $\widehat { f } _ { p } : = \partial \widehat { f } / \partial p$. The inversion formula reads:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014026.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
+
\begin{equation} \tag{a2} f ( x ) = \frac { 1 } { 4 \pi ^ { 2 } } \int _ { S ^ { 1 } } \int _ { - \infty } ^ { \infty } \frac { \hat { f } \rho ( \alpha , p ) } { \alpha . x - p } d p d \alpha, \end{equation}
  
so that (a1) is based on the following idea: Keep a small neighbourhood of the singular point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014027.png" /> in (a1) and neglect the rest of the [[Cauchy integral|Cauchy integral]] in (a1).
+
so that (a1) is based on the following idea: Keep a small neighbourhood of the singular point $p = \alpha . x$ in (a1) and neglect the rest of the [[Cauchy integral|Cauchy integral]] in (a1).
  
By definition, one needs only the local tomographic data to calculate the pseudo-local tomography function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014028.png" />.
+
By definition, one needs only the local tomographic data to calculate the pseudo-local tomography function $f _ { \rho } ( x )$.
  
The basic result is: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014029.png" /> is a [[Continuous function|continuous function]] [[#References|[a2]]], [[#References|[a1]]].
+
The basic result is: $f ( x ) - f _ { \rho } ( x ) \in C ( \mathbf{R} ^ { 2 } )$ is a [[Continuous function|continuous function]] [[#References|[a2]]], [[#References|[a1]]].
  
Therefore, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014031.png" /> have the same discontinuity curves and the same sizes of the jumps across discontinuities.
+
Therefore, $f ( x )$ and $f _ { \rho } ( x )$ have the same discontinuity curves and the same sizes of the jumps across discontinuities.
  
It is also proved in [[#References|[a2]]] that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014032.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014033.png" /> is an open set, then the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014034.png" /> has the following properties:
+
It is also proved in [[#References|[a2]]] that if $f \in C ^ { 2 } ( U )$, where $U \subset \mathbf{R} ^ { 2 }$ is an open set, then the function $f _ { \rho } ^ { C } ( x ) : = f ( x ) - f _ { \rho } ( x )$ has the following properties:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014035.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
+
\begin{equation} \tag{a3} | f ^ { C_ \rho } ( x ) - f ( x ) | = O ( \rho )\, \text { as } \rho \rightarrow 0 ,\, x \in U, \end{equation}
  
and the convergence in (a3) is uniform on compact subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014036.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014037.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014038.png" /> is a smooth discontinuity curve of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014039.png" />, then
+
and the convergence in (a3) is uniform on compact subsets of $U$. If $x _ { 0 } \in S$, where $S$ is a smooth discontinuity curve of $f ( x )$, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014040.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
+
\begin{equation} \tag{a4} \left| f _ { \rho } ^ { C } ( x _ { 0 } ) - \frac { f _+ ( x _ { 0 } ) + f_ - ( x _ { 0 } ) } { 2 } \right| = O ( \rho \operatorname { ln } \rho ) \text { as } \rho \rightarrow 0. \end{equation}
  
Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014041.png" /> are the limiting values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014042.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014043.png" /> from different sides of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014044.png" /> along a path non-tangential to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014045.png" />.
+
Here, $f \pm ( x _ { 0 } )$ are the limiting values of $f ( x )$ as $x \rightarrow x_{0}$ from different sides of $S$ along a path non-tangential to $S$.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014046.png" /> is a unit vector normal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014047.png" /> at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014048.png" />, then for an arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014049.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014050.png" />, one has
+
If $n_0$ is a unit vector normal to $S$ at the point $x _ { 0 }$, then for an arbitrary $\gamma \in \mathbf{R}$, $\gamma \neq 0$, one has
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014051.png" /></td> </tr></table>
+
\begin{equation*} \operatorname { lim } _ { \rho \rightarrow 0 } [ f ( x _ { 0 } + \gamma \rho n _ { 0 } ) - f _ { \rho } ^ { C } ( x _ { 0 } + \gamma \rho n _ { 0 } ) ] = D ( x _ { 0 } ) \psi ( \gamma ), \end{equation*}
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014052.png" /></td> </tr></table>
+
\begin{equation*} D ( x _ { 0 } ) : = \operatorname { lim } _ { t \rightarrow + 0 } [ f ( x _ { 0 } + t n _ { 0 } ) - f ( x - t n _ { 0 } ) ] \end{equation*}
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014053.png" /></td> </tr></table>
+
\begin{equation*} \psi ( \gamma ) : = \frac { 2 } { \pi ^ { 2 } } \int _ { 0 } ^ { \operatorname { min } ( 1,1 / \gamma ) } \frac { \operatorname { arccos } ( \gamma t ) } { \sqrt { 1 - t ^ { 2 } } } d t , \gamma &gt; 0; \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014054.png" /></td> </tr></table>
+
\begin{equation*} \psi ( - \gamma ) : = \psi ( \gamma ) , \gamma &gt; 0. \end{equation*}
  
The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014055.png" />, is monotonically decreasing on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014057.png" />,
+
The function $\psi ( \gamma ) &gt; 0$, is monotonically decreasing on $\mathbf{R} _ { + }$, $\psi ( + 0 ) = 1 / 2$,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014058.png" /></td> </tr></table>
+
\begin{equation*} \psi ( \gamma ) = \frac { 2 } { \pi ^ { 2 } \gamma } + O \left( \frac { 1 } { \gamma ^ { 3 } } \right) \text { as } \gamma \rightarrow + \infty. \end{equation*}
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014059.png" />, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014060.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014061.png" />th order derivatives of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014062.png" /> exist in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014063.png" />, some of them being discontinuous across <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014064.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014065.png" /> is piecewise-smooth in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014066.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014067.png" />.
+
If $f \in C ^ { k - 1 } ( U _ { \rho } )$, for $k \geq 1$ the $k$th order derivatives of $f ( x )$ exist in $U _ { \rho }$, some of them being discontinuous across $S$, and $S$ is piecewise-smooth in $U _ { \rho }$, then $f _ { \rho } ^ { C } \in C ^ { k } ( U )$.
  
Other properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014068.png" /> can be found in [[#References|[a2]]], which also contains a general method for constructing a family of pseudo-local tomography functions, that is, functions which are computable from local tomographic data and having the same discontinuities and the same sizes of the jumps as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p13014069.png" />.
+
Other properties of $f _ { \rho }$ can be found in [[#References|[a2]]], which also contains a general method for constructing a family of pseudo-local tomography functions, that is, functions which are computable from local tomographic data and having the same discontinuities and the same sizes of the jumps as $f ( x )$.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.G. Ramm,  A. Katsevich,  "Pseudolocal tomography"  ''SIAM J. Appl. Math.'' , '''56''' :  1  (1996)  pp. 167–191</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.G. Ramm,  A. Katsevich,  "The Radon transform and local tomography" , CRC  (1996)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  A.G. Ramm,  A. Katsevich,  "Pseudolocal tomography"  ''SIAM J. Appl. Math.'' , '''56''' :  1  (1996)  pp. 167–191</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  A.G. Ramm,  A. Katsevich,  "The Radon transform and local tomography" , CRC  (1996)</td></tr></table>

Revision as of 16:46, 1 July 2020

Let $f ( x )$ be a piecewise smooth, compactly supported function, $x \in \mathbf R ^ { 2 }$. The Radon transform $\widehat { f } ( \alpha , p ) : = R f$ is defined by the formula $\hat { f } ( \alpha , p ) = \int _ { \operatorname { l_ {\alpha p} } } f ( x ) d s$, where $\text{l} _ { \alpha p} : = \{ x : \alpha \cdot x = p \}$ is a straight line parametrized by a unit vector $\alpha \in S ^ { 1 }$, $S ^ { 1 }$ is the unit circle in $\mathbf{R} ^ { 2 }$ and $p \in \mathbf R _ { + } : = [ 0 , \infty )$. By definition, $\widehat { f } ( - \alpha , - p ) = \widehat { f } ( \alpha , p )$. By local tomographic data one means the values of $\hat { f } ( \alpha , p )$ for $\alpha$ and $p$ satisfying the condition $| \alpha . x _ { 0 } - p | < \rho$, where $x _ { 0 }$ is a given point and $p > 0$ is a small number. Thus, local tomographic data are the line integrals of $f ( x )$ for the lines intersecting the "region of interest" , the disc centred at $x _ { 0 }$ of radius $\rho$ (cf. also Local tomography; Tomography).

It is not possible, in general, to find $f ( x _ { 0 } )$ from the local tomographic data [a2]. What practically useful information about $f ( x )$ can one get from these data? Information, very useful practically, is the location of discontinuity curves of $f ( x )$ and the sizes of the jumps of $f ( x )$ across these curves.

Pseudo-local tomography solves the problem of finding the above information from the local tomographic data.

This is done by computing the pseudo-local tomography function, introduced in [a2]:

(a1)

where $\widehat { f } _ { p } : = \partial \widehat { f } / \partial p$. The inversion formula reads:

\begin{equation} \tag{a2} f ( x ) = \frac { 1 } { 4 \pi ^ { 2 } } \int _ { S ^ { 1 } } \int _ { - \infty } ^ { \infty } \frac { \hat { f } \rho ( \alpha , p ) } { \alpha . x - p } d p d \alpha, \end{equation}

so that (a1) is based on the following idea: Keep a small neighbourhood of the singular point $p = \alpha . x$ in (a1) and neglect the rest of the Cauchy integral in (a1).

By definition, one needs only the local tomographic data to calculate the pseudo-local tomography function $f _ { \rho } ( x )$.

The basic result is: $f ( x ) - f _ { \rho } ( x ) \in C ( \mathbf{R} ^ { 2 } )$ is a continuous function [a2], [a1].

Therefore, $f ( x )$ and $f _ { \rho } ( x )$ have the same discontinuity curves and the same sizes of the jumps across discontinuities.

It is also proved in [a2] that if $f \in C ^ { 2 } ( U )$, where $U \subset \mathbf{R} ^ { 2 }$ is an open set, then the function $f _ { \rho } ^ { C } ( x ) : = f ( x ) - f _ { \rho } ( x )$ has the following properties:

\begin{equation} \tag{a3} | f ^ { C_ \rho } ( x ) - f ( x ) | = O ( \rho )\, \text { as } \rho \rightarrow 0 ,\, x \in U, \end{equation}

and the convergence in (a3) is uniform on compact subsets of $U$. If $x _ { 0 } \in S$, where $S$ is a smooth discontinuity curve of $f ( x )$, then

\begin{equation} \tag{a4} \left| f _ { \rho } ^ { C } ( x _ { 0 } ) - \frac { f _+ ( x _ { 0 } ) + f_ - ( x _ { 0 } ) } { 2 } \right| = O ( \rho \operatorname { ln } \rho ) \text { as } \rho \rightarrow 0. \end{equation}

Here, $f \pm ( x _ { 0 } )$ are the limiting values of $f ( x )$ as $x \rightarrow x_{0}$ from different sides of $S$ along a path non-tangential to $S$.

If $n_0$ is a unit vector normal to $S$ at the point $x _ { 0 }$, then for an arbitrary $\gamma \in \mathbf{R}$, $\gamma \neq 0$, one has

\begin{equation*} \operatorname { lim } _ { \rho \rightarrow 0 } [ f ( x _ { 0 } + \gamma \rho n _ { 0 } ) - f _ { \rho } ^ { C } ( x _ { 0 } + \gamma \rho n _ { 0 } ) ] = D ( x _ { 0 } ) \psi ( \gamma ), \end{equation*}

where

\begin{equation*} D ( x _ { 0 } ) : = \operatorname { lim } _ { t \rightarrow + 0 } [ f ( x _ { 0 } + t n _ { 0 } ) - f ( x - t n _ { 0 } ) ] \end{equation*}

and

\begin{equation*} \psi ( \gamma ) : = \frac { 2 } { \pi ^ { 2 } } \int _ { 0 } ^ { \operatorname { min } ( 1,1 / \gamma ) } \frac { \operatorname { arccos } ( \gamma t ) } { \sqrt { 1 - t ^ { 2 } } } d t , \gamma > 0; \end{equation*}

\begin{equation*} \psi ( - \gamma ) : = \psi ( \gamma ) , \gamma > 0. \end{equation*}

The function $\psi ( \gamma ) > 0$, is monotonically decreasing on $\mathbf{R} _ { + }$, $\psi ( + 0 ) = 1 / 2$,

\begin{equation*} \psi ( \gamma ) = \frac { 2 } { \pi ^ { 2 } \gamma } + O \left( \frac { 1 } { \gamma ^ { 3 } } \right) \text { as } \gamma \rightarrow + \infty. \end{equation*}

If $f \in C ^ { k - 1 } ( U _ { \rho } )$, for $k \geq 1$ the $k$th order derivatives of $f ( x )$ exist in $U _ { \rho }$, some of them being discontinuous across $S$, and $S$ is piecewise-smooth in $U _ { \rho }$, then $f _ { \rho } ^ { C } \in C ^ { k } ( U )$.

Other properties of $f _ { \rho }$ can be found in [a2], which also contains a general method for constructing a family of pseudo-local tomography functions, that is, functions which are computable from local tomographic data and having the same discontinuities and the same sizes of the jumps as $f ( x )$.

References

[a1] A.G. Ramm, A. Katsevich, "Pseudolocal tomography" SIAM J. Appl. Math. , 56 : 1 (1996) pp. 167–191
[a2] A.G. Ramm, A. Katsevich, "The Radon transform and local tomography" , CRC (1996)
How to Cite This Entry:
Pseudo-local tomography. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo-local_tomography&oldid=12248
This article was adapted from an original article by A.G. Ramm (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article