Namespaces
Variants
Actions

Difference between revisions of "Projective connection"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A [[Differential-geometric structure|differential-geometric structure]] on a smooth manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p0751801.png" />; a special kind of connection on a manifold (cf. [[Connections on a manifold|Connections on a manifold]]), where the smooth fibre space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p0751802.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p0751803.png" /> has the projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p0751804.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p0751805.png" /> as its standard fibre. The structure of this <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p0751806.png" /> associates to each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p0751807.png" /> a copy of the projective space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p0751808.png" />, which is identified (up to a homology with an invariant pencil of straight lines at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p0751809.png" />) with the tangent centro-affine space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518010.png" /> augmented by a hyperplane at infinity. As a connection in such an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518011.png" />, a projective connection consists of the assignment of a projective mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518012.png" /> to each smooth curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518013.png" /> starting at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518014.png" /> and for each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518015.png" /> of the curve in such a way that the following condition is satisfied. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518016.png" /> be covered by coordinate regions in which the smooth field of frames in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518017.png" /> is fixed, with the vertex determined by the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518018.png" /> coinciding with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518019.png" />. (A frame in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518020.png" /> is determined by an equivalence class of bases in the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518021.png" />, where two bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518024.png" />, are assumed to be equivalent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518026.png" />.) Then as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518027.png" />, the mapping in the family must tend to the identity mapping, and the principal part of its deviation from the identity mapping must be determined relative to the field of frames in some neighbourhood of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518028.png" /> by a matrix of linear differential forms
+
<!--
 +
p0751801.png
 +
$#A+1 = 103 n = 0
 +
$#C+1 = 103 : ~/encyclopedia/old_files/data/P075/P.0705180 Projective connection
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518029.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518030.png" /></td> </tr></table>
+
A [[Differential-geometric structure|differential-geometric structure]] on a smooth manifold  $  M $;  
 +
a special kind of connection on a manifold (cf. [[Connections on a manifold|Connections on a manifold]]), where the smooth fibre space  $  E $
 +
over  $  M $
 +
has the projective space  $  P _ {n} $
 +
of dimension  $  n = \mathop{\rm dim}  M $
 +
as its standard fibre. The structure of this  $  E $
 +
associates to each point  $  x \in M $
 +
a copy of the projective space,  $  ( P _ {n} ) _ {x} $,
 +
which is identified (up to a homology with an invariant pencil of straight lines at the point  $  x $)
 +
with the tangent centro-affine space  $  T _ {x} ( M ) $
 +
augmented by a hyperplane at infinity. As a connection in such an  $  E $,
 +
a projective connection consists of the assignment of a projective mapping  $  ( P _ {n} ) _ {x _ {t}  } \rightarrow ( P _ {n} ) _ {x _ {0}  } $
 +
to each smooth curve  $  {\mathcal L} \in M $
 +
starting at  $  x _ {0} $
 +
and for each point  $  x _ {t} $
 +
of the curve in such a way that the following condition is satisfied. Let  $  M $
 +
be covered by coordinate regions in which the smooth field of frames in  $  ( P _ {n} ) _ {x} $
 +
is fixed, with the vertex determined by the vector  $  e _ {0} $
 +
coinciding with  $  x $.
 +
(A frame in  $  P _ {n} $
 +
is determined by an equivalence class of bases in the vector space  $  V _ {n+} 1 $,
 +
where two bases  $  \{ e _  \alpha  \} $
 +
and  $  \{ e _  \alpha  ^  \prime  \} $,
 +
$  \alpha = 0 \dots n $,
 +
are assumed to be equivalent if  $  e _  \alpha  ^  \prime  = \lambda e _  \alpha  $,
 +
$  \lambda \neq 0 $.)
 +
Then as  $  t \rightarrow 0 $,
 +
the mapping in the family must tend to the identity mapping, and the principal part of its deviation from the identity mapping must be determined relative to the field of frames in some neighbourhood of the point  $  x _ {0} $
 +
by a matrix of linear differential forms
  
common for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518031.png" />. In other words, the image of the frame at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518032.png" /> under the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518033.png" /> must be determined by the vectors
+
$$ \tag{1 }
 +
\omega _  \alpha  ^  \beta  = \Gamma _ {\beta i }  ^  \alpha  d x  ^ {i}
 +
,\  \mathop{\rm det}  \| \Gamma _ {0i}  ^ {j} \|  \neq  0 ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518034.png" /></td> </tr></table>
+
$$
 +
\alpha , \beta  = 0 \dots n ; \  i , j  = 1 \dots n,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518035.png" /> is the tangent vector to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518036.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518038.png" />. The possibility of passing to equivalent bases leads to the fact that among the forms (1) only the forms
+
common for all  $  {\mathcal L} $.  
 +
In other words, the image of the frame at a point  $  x _ {t} $
 +
under the mapping  $  ( P _ {n} ) _ {x _ {t}  } \rightarrow ( P _ {n} ) _ {x _ {0}  } $
 +
must be determined by the vectors
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518039.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$
 +
e _  \beta  [ \delta _  \alpha  ^  \beta  + \omega _  \alpha  ^  \beta  ( X
 +
) t + \epsilon _  \alpha  ^  \beta  ( t ) ] ,
 +
$$
  
are essential. When transforming the frame of the field at an arbitrary point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518040.png" /> according to the formulas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518042.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518043.png" />, that is, when passing to an arbitrary element of the principal fibre space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518044.png" /> of frames in the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518045.png" />, the forms (1) are replaced by the following <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518046.png" />-forms on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518047.png" />:
+
where  $  X $
 +
is the tangent vector to  $  {\mathcal L} $
 +
at $  x _ {0} $
 +
and  $  \lim\limits _ {t \rightarrow 0 }  \epsilon _  \alpha  ^  \beta  ( t ) / t = 0 $.  
 +
The possibility of passing to equivalent bases leads to the fact that among the forms (1) only the forms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518048.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{2 }
 +
\omega _ {0}  ^ {i} ,\  \theta _ {i}  ^ {j}  = \omega _ {i}  ^ {j} - \delta _ {i}  ^ {j} \omega _ {0}  ^ {0} ,\  \omega _ {i}  ^ {0}
 +
$$
  
The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518049.png" />-forms
+
are essential. When transforming the frame of the field at an arbitrary point  $  x \in M $
 +
according to the formulas  $  e _ {\alpha  ^  \prime  } = A _ {\alpha  ^  \prime  }  ^  \beta  e _  \beta  $,
 +
$  e _  \beta  = A _  \beta  ^ {\alpha  ^  \prime  } e _ {\alpha  ^  \prime  } $,
 +
where  $  A _ {0 ^  \prime  }  ^ {i} = A _ {0} ^ {i  ^  \prime  } = 0 $,
 +
that is, when passing to an arbitrary element of the principal fibre space  $  \Pi $
 +
of frames in the spaces  $  ( P _ {n} ) _ {x} $,
 +
the forms (1) are replaced by the following  $  1 $-
 +
forms on  $  \Pi $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518050.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{3 }
 +
\omega _ {\alpha  ^  \prime  } ^ {\beta  ^  \prime  }  = A _  \gamma  ^ {
 +
\beta  ^  \prime  }  d A _ {\alpha  ^  \prime  }  ^  \gamma  + A _ {\alpha  ^  \prime 
 +
}  ^  \gamma  A _  \delta  ^ {\beta  ^  \prime  } \omega _  \gamma  ^  \delta  .
 +
$$
  
are semi-basic, that is, linear combinations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518051.png" />, and tensorial, that is, under the transformation of the frame by the matrices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518052.png" /> the formulas
+
The  $  2 $-
 +
forms
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518053.png" /></td> </tr></table>
+
$$ \tag{4 }
 +
\Omega _ {\alpha  ^  \prime  } ^ {\beta  ^  \prime  }  = d \omega _ {\alpha
 +
^  \prime  } ^ {\beta  ^  \prime  } + \omega _ {\gamma  ^  \prime  } ^ {\beta
 +
^  \prime  } \wedge \omega _ {\alpha  ^  \prime  } ^ {\gamma  ^  \prime  }
 +
$$
  
hold, where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518054.png" /> are composed from (3) similarly to (4). For the essential forms (2) the structure equations of the projective connection hold (the primes are omitted for simplicity):
+
are semi-basic, that is, linear combinations of  $  \omega _ {0}  ^ {k} \wedge \omega _ {0}  ^ {1} $,
 +
and tensorial, that is, under the transformation of the frame by the matrices  $  A _  \alpha  ^  \gamma  $
 +
the formulas
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518055.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
$$
 +
\Omega _ {\alpha  ^  \prime  } ^ {\beta  ^  \prime  }  = A _ {\alpha  ^  \prime 
 +
}  ^  \gamma  A _  \delta  ^ {\beta  ^  \prime  } \Omega _  \gamma  ^  \delta
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518056.png" />. Here, the right-hand sides are semi-basic; they constitute the system of torsion-curvature forms of the projective connection.
+
hold, where the $  \Omega _ {\alpha  ^  \prime  } ^ {\beta  ^  \prime  } $
 +
are composed from (3) similarly to (4). For the essential forms (2) the structure equations of the projective connection hold (the primes are omitted for simplicity):
  
The equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518057.png" /> has an invariant meaning. In this case one speaks of a torsion-free projective connection; for it <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518058.png" />. The invariant identities
+
$$ \tag{5 }
 +
\left .
 +
\begin{array}{c}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518059.png" /></td> </tr></table>
+
{d \omega _ {0}  ^ {i} + \theta _ {j}  ^ {i} \wedge \omega _ {0}  ^ {j}  = \
 +
\Omega _ {0}  ^ {i} , }
 +
\\
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518060.png" /></td> </tr></table>
+
{d \theta _ {i}  ^ {j} + \theta _ {k}  ^ {j} \wedge \theta _ {i}  ^ {k} +
 +
\omega _ {0}  ^ {k} \wedge ( \delta _ {i}  ^ {j} \omega _ {k}  ^ {0} + \delta _ {k}  ^ {j} \omega _ {i}  ^ {0} )  =  \Theta _ {i}  ^ {j} , }
 +
\\
 +
 
 +
{d \omega _ {i}  ^ {0} + \omega _ {k}  ^ {0} \wedge \theta _ {i}  ^ {k}  = \
 +
\Omega _ {i}  ^ {0} , }
 +
 +
\end{array}
 +
 
 +
\right \}
 +
$$
 +
 
 +
where  $  \Theta _ {i}  ^ {j} = \Omega _ {i}  ^ {j} - \delta _ {i}  ^ {j} \Omega _ {0}  ^ {0} $.
 +
Here, the right-hand sides are semi-basic; they constitute the system of torsion-curvature forms of the projective connection.
 +
 
 +
The equality  $  \Omega _ {0}  ^ {i} = 0 $
 +
has an invariant meaning. In this case one speaks of a torsion-free projective connection; for it  $  \Theta _ {i  ^  \prime  } ^ {i  ^  \prime  } = \Theta _ {i}  ^ {i} $.
 +
The invariant identities
 +
 
 +
$$
 +
\Omega _ {0}  ^ {i}  \equiv  0 ,\  \Theta _ {i}  ^ {i}  \equiv  0 ,
 +
$$
 +
 
 +
$$
 +
K _ {ikj}  ^ {j}  \equiv  0 ,\  \Theta _ {i}  ^ {j}  =
 +
\frac{1}{2}
 +
 
 +
K _ {ikl}  ^ {j} \omega _ {0}  ^ {k} \wedge \omega _ {0}  ^ {l}
 +
$$
  
 
distinguish a special class of projective connections, called (by E. Cartan) normal projective connections.
 
distinguish a special class of projective connections, called (by E. Cartan) normal projective connections.
  
The forms (1) determine a projective connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518061.png" /> uniquely: The image, under the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518062.png" />, of the frame at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518063.png" /> is determined by the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518064.png" /> of the system
+
The forms (1) determine a projective connection on $  M $
 +
uniquely: The image, under the mapping $  ( P _ {n} ) _ {x _ {t}  } \rightarrow ( P _ {n} ) _ {x _ {0}  } $,  
 +
of the frame at the point $  x _ {t} $
 +
is determined by the solution $  \{ e _  \alpha  ( t) \} $
 +
of the system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518065.png" /></td> <td valign="top" style="width:5%;text-align:right;">(6)</td></tr></table>
+
$$ \tag{6 }
 +
du _  \alpha  = ( \omega _  \alpha  ^  \beta  ) _ {x ( t ) }  ( \dot{x}
 +
( t ) ) u _  \beta  $$
  
under the initial conditions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518066.png" />, where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518067.png" /> are the equations of the curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518068.png" /> in some coordinate neighbourhood of its point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518069.png" /> with coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518070.png" />.
+
under the initial conditions $  u _  \alpha  ( 0 ) = e _  \alpha  $,  
 +
where the $  x  ^ {i} = x  ^ {i} ( t ) $
 +
are the equations of the curve $  {\mathcal L} $
 +
in some coordinate neighbourhood of its point $  x _ {0} $
 +
with coordinates $  x  ^ {i} ( 0 ) $.
  
Any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518071.png" />-forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518072.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518073.png" /> and satisfying equations (5) with right-hand sides expressible in terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518074.png" />, where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518076.png" />, are linearly independent, define in this sense a projective connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518077.png" />.
+
Any $  1 $-
 +
forms $  \omega _ {0}  ^ {i} , \theta _ {i}  ^ {j} , \omega _ {i}  ^ {0} $
 +
defined on $  \Pi $
 +
and satisfying equations (5) with right-hand sides expressible in terms of $  \omega _ {0}  ^ {k} \wedge \omega _ {0}  ^ {l} $,  
 +
where the $  \omega _ {0}  ^ {i} $,  
 +
$  i = 1 \dots n $,  
 +
are linearly independent, define in this sense a projective connection on $  M $.
  
The curve described in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518078.png" /> by the point determined by the first vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518079.png" /> of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518080.png" /> of the system (6) is called the development of the curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518081.png" />. A curve is called a geodesic line of the projective connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518082.png" /> if its development in some neighbourhood of an arbitrary point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518083.png" /> of it is a straight line of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518084.png" />. The equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518085.png" /> of a geodesic line are determined with the aid of the functions
+
The curve described in $  ( P _ {n} ) _ {x _ {0}  } $
 +
by the point determined by the first vector $  e _ {0} ( t ) $
 +
of the solution $  \{ e _  \alpha  ( t ) \} $
 +
of the system (6) is called the development of the curve $  {\mathcal L} $.  
 +
A curve is called a geodesic line of the projective connection on $  M $
 +
if its development in some neighbourhood of an arbitrary point $  x $
 +
of it is a straight line of the space $  ( P _ {n} ) _ {x} $.  
 +
The equations $  x  ^ {i} = x  ^ {i} ( t ) $
 +
of a geodesic line are determined with the aid of the functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518086.png" /></td> </tr></table>
+
$$
 +
\xi ( t )  = ( \omega  ^ {i} ) _ {x ( t ) }  ( \dot{x} ( t ) )
 +
$$
  
 
from the system
 
from the system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518087.png" /></td> </tr></table>
+
$$
 +
d \xi  ^ {i} + \xi  ^ {j} ( \theta _ {j}  ^ {i} ) _ {x ( t ) }  ( \dot{x} (
 +
t ) )  = \theta _ {x ( t ) }  ( \dot{x} ( t ) ) \xi  ^ {i} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518088.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518089.png" />-form. In the frame where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518090.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518091.png" />, this system has the form
+
where $  \theta $
 +
is a $  1 $-
 +
form. In the frame where $  \omega  ^ {i} = dx  ^ {i} $
 +
and $  \xi  ^ {i} = \dot{x}  ^ {i} $,  
 +
this system has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518092.png" /></td> <td valign="top" style="width:5%;text-align:right;">(7)</td></tr></table>
+
$$ \tag{7 }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518093.png" /></td> </tr></table>
+
\frac{d  ^ {2} x  ^ {a} }{( d x  ^ {n} )  ^ {2} }
 +
  = - Q  ^ {a}
 +
\left (
 +
\frac{d x  ^ {1} }{d x  ^ {n} }
 +
\dots
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518094.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518095.png" /> are polynomials of degree two with functions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518096.png" /> as coefficients.
+
\frac{d x  ^ {n-} 1 }{d x  ^ {n} }
 +
\right ) +
 +
$$
  
Cartan's theorem: If on a smooth manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518097.png" /> a system of curves is given that is locally defined by a system of differential equations of the form (7), then there is one and only one normal projective connection for which this system of curves is the system of geodesic lines.
+
$$
 +
+
  
The theory of projective connections thus supplies a means for an invariant investigation of systems of differential equations of a special form. Projective connections are also useful in the investigation of geodesic (or projective) mappings of spaces with affine connections. A projective connection reduces to an [[Affine connection|affine connection]] if on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518098.png" /> there are local fields of frames with respect to which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p07518099.png" />. For every affine connection on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p075180100.png" /> there is a unique normal projective connection with the same geodesic lines, from which the former can be obtained. Two affine connections are geodesically (or projectively) equivalent if their normal projective connections coincide. In particular, an affine connection on an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p075180101.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p075180102.png" /> is projectively Euclidean if and only if its projective curvature tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075180/p075180103.png" /> vanishes.
+
\frac{d x  ^ {a} }{d x  ^ {n} }
 +
Q  ^ {n} \left (
 +
\frac{d x  ^ {1} }{d x  ^ {n} }
 +
\dots
 +
\frac{d x  ^ {n-} 1 }{d x  ^ {n} }
 +
\right ) ,
 +
$$
 +
 
 +
where  $  Q  ^ {a} $
 +
and  $  Q  ^ {n} $
 +
are polynomials of degree two with functions of  $  x  ^ {1} \dots x  ^ {n} $
 +
as coefficients.
 +
 
 +
Cartan's theorem: If on a smooth manifold  $  M $
 +
a system of curves is given that is locally defined by a system of differential equations of the form (7), then there is one and only one normal projective connection for which this system of curves is the system of geodesic lines.
 +
 
 +
The theory of projective connections thus supplies a means for an invariant investigation of systems of differential equations of a special form. Projective connections are also useful in the investigation of geodesic (or projective) mappings of spaces with affine connections. A projective connection reduces to an [[Affine connection|affine connection]] if on $  M $
 +
there are local fields of frames with respect to which $  \omega _ {i}  ^ {0} = P _ {ij} \omega _ {0}  ^ {j} $.  
 +
For every affine connection on $  M $
 +
there is a unique normal projective connection with the same geodesic lines, from which the former can be obtained. Two affine connections are geodesically (or projectively) equivalent if their normal projective connections coincide. In particular, an affine connection on an $  M $
 +
with $  \mathop{\rm dim}  M > 2 $
 +
is projectively Euclidean if and only if its projective curvature tensor $  K _ {ikl}  ^ {j} $
 +
vanishes.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Cartan,  "Sur les variétés à connexion projective"  ''Bull. Soc. Math. France'' , '''52'''  (1924)  pp. 205–241</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Cartan,  "Leçons sur la théorie des espaces à connexion projective" , Gauthier-Villars  (1937)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. Kobayashi,  T. Nagano,  "On projective connections"  ''J. Math. and Mech.'' , '''13''' :  2  (1964)  pp. 215–235</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Cartan,  "Sur les variétés à connexion projective"  ''Bull. Soc. Math. France'' , '''52'''  (1924)  pp. 205–241</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Cartan,  "Leçons sur la théorie des espaces à connexion projective" , Gauthier-Villars  (1937)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. Kobayashi,  T. Nagano,  "On projective connections"  ''J. Math. and Mech.'' , '''13''' :  2  (1964)  pp. 215–235</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Kobayashi,  "Transformation groups in differential geometry" , Springer  (1972)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Kobayashi,  "Transformation groups in differential geometry" , Springer  (1972)</TD></TR></table>

Revision as of 08:08, 6 June 2020


A differential-geometric structure on a smooth manifold $ M $; a special kind of connection on a manifold (cf. Connections on a manifold), where the smooth fibre space $ E $ over $ M $ has the projective space $ P _ {n} $ of dimension $ n = \mathop{\rm dim} M $ as its standard fibre. The structure of this $ E $ associates to each point $ x \in M $ a copy of the projective space, $ ( P _ {n} ) _ {x} $, which is identified (up to a homology with an invariant pencil of straight lines at the point $ x $) with the tangent centro-affine space $ T _ {x} ( M ) $ augmented by a hyperplane at infinity. As a connection in such an $ E $, a projective connection consists of the assignment of a projective mapping $ ( P _ {n} ) _ {x _ {t} } \rightarrow ( P _ {n} ) _ {x _ {0} } $ to each smooth curve $ {\mathcal L} \in M $ starting at $ x _ {0} $ and for each point $ x _ {t} $ of the curve in such a way that the following condition is satisfied. Let $ M $ be covered by coordinate regions in which the smooth field of frames in $ ( P _ {n} ) _ {x} $ is fixed, with the vertex determined by the vector $ e _ {0} $ coinciding with $ x $. (A frame in $ P _ {n} $ is determined by an equivalence class of bases in the vector space $ V _ {n+} 1 $, where two bases $ \{ e _ \alpha \} $ and $ \{ e _ \alpha ^ \prime \} $, $ \alpha = 0 \dots n $, are assumed to be equivalent if $ e _ \alpha ^ \prime = \lambda e _ \alpha $, $ \lambda \neq 0 $.) Then as $ t \rightarrow 0 $, the mapping in the family must tend to the identity mapping, and the principal part of its deviation from the identity mapping must be determined relative to the field of frames in some neighbourhood of the point $ x _ {0} $ by a matrix of linear differential forms

$$ \tag{1 } \omega _ \alpha ^ \beta = \Gamma _ {\beta i } ^ \alpha d x ^ {i} ,\ \mathop{\rm det} \| \Gamma _ {0i} ^ {j} \| \neq 0 , $$

$$ \alpha , \beta = 0 \dots n ; \ i , j = 1 \dots n, $$

common for all $ {\mathcal L} $. In other words, the image of the frame at a point $ x _ {t} $ under the mapping $ ( P _ {n} ) _ {x _ {t} } \rightarrow ( P _ {n} ) _ {x _ {0} } $ must be determined by the vectors

$$ e _ \beta [ \delta _ \alpha ^ \beta + \omega _ \alpha ^ \beta ( X ) t + \epsilon _ \alpha ^ \beta ( t ) ] , $$

where $ X $ is the tangent vector to $ {\mathcal L} $ at $ x _ {0} $ and $ \lim\limits _ {t \rightarrow 0 } \epsilon _ \alpha ^ \beta ( t ) / t = 0 $. The possibility of passing to equivalent bases leads to the fact that among the forms (1) only the forms

$$ \tag{2 } \omega _ {0} ^ {i} ,\ \theta _ {i} ^ {j} = \omega _ {i} ^ {j} - \delta _ {i} ^ {j} \omega _ {0} ^ {0} ,\ \omega _ {i} ^ {0} $$

are essential. When transforming the frame of the field at an arbitrary point $ x \in M $ according to the formulas $ e _ {\alpha ^ \prime } = A _ {\alpha ^ \prime } ^ \beta e _ \beta $, $ e _ \beta = A _ \beta ^ {\alpha ^ \prime } e _ {\alpha ^ \prime } $, where $ A _ {0 ^ \prime } ^ {i} = A _ {0} ^ {i ^ \prime } = 0 $, that is, when passing to an arbitrary element of the principal fibre space $ \Pi $ of frames in the spaces $ ( P _ {n} ) _ {x} $, the forms (1) are replaced by the following $ 1 $- forms on $ \Pi $:

$$ \tag{3 } \omega _ {\alpha ^ \prime } ^ {\beta ^ \prime } = A _ \gamma ^ { \beta ^ \prime } d A _ {\alpha ^ \prime } ^ \gamma + A _ {\alpha ^ \prime } ^ \gamma A _ \delta ^ {\beta ^ \prime } \omega _ \gamma ^ \delta . $$

The $ 2 $- forms

$$ \tag{4 } \Omega _ {\alpha ^ \prime } ^ {\beta ^ \prime } = d \omega _ {\alpha ^ \prime } ^ {\beta ^ \prime } + \omega _ {\gamma ^ \prime } ^ {\beta ^ \prime } \wedge \omega _ {\alpha ^ \prime } ^ {\gamma ^ \prime } $$

are semi-basic, that is, linear combinations of $ \omega _ {0} ^ {k} \wedge \omega _ {0} ^ {1} $, and tensorial, that is, under the transformation of the frame by the matrices $ A _ \alpha ^ \gamma $ the formulas

$$ \Omega _ {\alpha ^ \prime } ^ {\beta ^ \prime } = A _ {\alpha ^ \prime } ^ \gamma A _ \delta ^ {\beta ^ \prime } \Omega _ \gamma ^ \delta $$

hold, where the $ \Omega _ {\alpha ^ \prime } ^ {\beta ^ \prime } $ are composed from (3) similarly to (4). For the essential forms (2) the structure equations of the projective connection hold (the primes are omitted for simplicity):

$$ \tag{5 } \left . \begin{array}{c} {d \omega _ {0} ^ {i} + \theta _ {j} ^ {i} \wedge \omega _ {0} ^ {j} = \ \Omega _ {0} ^ {i} , } \\ {d \theta _ {i} ^ {j} + \theta _ {k} ^ {j} \wedge \theta _ {i} ^ {k} + \omega _ {0} ^ {k} \wedge ( \delta _ {i} ^ {j} \omega _ {k} ^ {0} + \delta _ {k} ^ {j} \omega _ {i} ^ {0} ) = \Theta _ {i} ^ {j} , } \\ {d \omega _ {i} ^ {0} + \omega _ {k} ^ {0} \wedge \theta _ {i} ^ {k} = \ \Omega _ {i} ^ {0} , } \end{array} \right \} $$

where $ \Theta _ {i} ^ {j} = \Omega _ {i} ^ {j} - \delta _ {i} ^ {j} \Omega _ {0} ^ {0} $. Here, the right-hand sides are semi-basic; they constitute the system of torsion-curvature forms of the projective connection.

The equality $ \Omega _ {0} ^ {i} = 0 $ has an invariant meaning. In this case one speaks of a torsion-free projective connection; for it $ \Theta _ {i ^ \prime } ^ {i ^ \prime } = \Theta _ {i} ^ {i} $. The invariant identities

$$ \Omega _ {0} ^ {i} \equiv 0 ,\ \Theta _ {i} ^ {i} \equiv 0 , $$

$$ K _ {ikj} ^ {j} \equiv 0 ,\ \Theta _ {i} ^ {j} = \frac{1}{2} K _ {ikl} ^ {j} \omega _ {0} ^ {k} \wedge \omega _ {0} ^ {l} $$

distinguish a special class of projective connections, called (by E. Cartan) normal projective connections.

The forms (1) determine a projective connection on $ M $ uniquely: The image, under the mapping $ ( P _ {n} ) _ {x _ {t} } \rightarrow ( P _ {n} ) _ {x _ {0} } $, of the frame at the point $ x _ {t} $ is determined by the solution $ \{ e _ \alpha ( t) \} $ of the system

$$ \tag{6 } du _ \alpha = ( \omega _ \alpha ^ \beta ) _ {x ( t ) } ( \dot{x} ( t ) ) u _ \beta $$

under the initial conditions $ u _ \alpha ( 0 ) = e _ \alpha $, where the $ x ^ {i} = x ^ {i} ( t ) $ are the equations of the curve $ {\mathcal L} $ in some coordinate neighbourhood of its point $ x _ {0} $ with coordinates $ x ^ {i} ( 0 ) $.

Any $ 1 $- forms $ \omega _ {0} ^ {i} , \theta _ {i} ^ {j} , \omega _ {i} ^ {0} $ defined on $ \Pi $ and satisfying equations (5) with right-hand sides expressible in terms of $ \omega _ {0} ^ {k} \wedge \omega _ {0} ^ {l} $, where the $ \omega _ {0} ^ {i} $, $ i = 1 \dots n $, are linearly independent, define in this sense a projective connection on $ M $.

The curve described in $ ( P _ {n} ) _ {x _ {0} } $ by the point determined by the first vector $ e _ {0} ( t ) $ of the solution $ \{ e _ \alpha ( t ) \} $ of the system (6) is called the development of the curve $ {\mathcal L} $. A curve is called a geodesic line of the projective connection on $ M $ if its development in some neighbourhood of an arbitrary point $ x $ of it is a straight line of the space $ ( P _ {n} ) _ {x} $. The equations $ x ^ {i} = x ^ {i} ( t ) $ of a geodesic line are determined with the aid of the functions

$$ \xi ( t ) = ( \omega ^ {i} ) _ {x ( t ) } ( \dot{x} ( t ) ) $$

from the system

$$ d \xi ^ {i} + \xi ^ {j} ( \theta _ {j} ^ {i} ) _ {x ( t ) } ( \dot{x} ( t ) ) = \theta _ {x ( t ) } ( \dot{x} ( t ) ) \xi ^ {i} , $$

where $ \theta $ is a $ 1 $- form. In the frame where $ \omega ^ {i} = dx ^ {i} $ and $ \xi ^ {i} = \dot{x} ^ {i} $, this system has the form

$$ \tag{7 } \frac{d ^ {2} x ^ {a} }{( d x ^ {n} ) ^ {2} } = - Q ^ {a} \left ( \frac{d x ^ {1} }{d x ^ {n} } \dots \frac{d x ^ {n-} 1 }{d x ^ {n} } \right ) + $$

$$ + \frac{d x ^ {a} }{d x ^ {n} } Q ^ {n} \left ( \frac{d x ^ {1} }{d x ^ {n} } \dots \frac{d x ^ {n-} 1 }{d x ^ {n} } \right ) , $$

where $ Q ^ {a} $ and $ Q ^ {n} $ are polynomials of degree two with functions of $ x ^ {1} \dots x ^ {n} $ as coefficients.

Cartan's theorem: If on a smooth manifold $ M $ a system of curves is given that is locally defined by a system of differential equations of the form (7), then there is one and only one normal projective connection for which this system of curves is the system of geodesic lines.

The theory of projective connections thus supplies a means for an invariant investigation of systems of differential equations of a special form. Projective connections are also useful in the investigation of geodesic (or projective) mappings of spaces with affine connections. A projective connection reduces to an affine connection if on $ M $ there are local fields of frames with respect to which $ \omega _ {i} ^ {0} = P _ {ij} \omega _ {0} ^ {j} $. For every affine connection on $ M $ there is a unique normal projective connection with the same geodesic lines, from which the former can be obtained. Two affine connections are geodesically (or projectively) equivalent if their normal projective connections coincide. In particular, an affine connection on an $ M $ with $ \mathop{\rm dim} M > 2 $ is projectively Euclidean if and only if its projective curvature tensor $ K _ {ikl} ^ {j} $ vanishes.

References

[1] E. Cartan, "Sur les variétés à connexion projective" Bull. Soc. Math. France , 52 (1924) pp. 205–241
[2] E. Cartan, "Leçons sur la théorie des espaces à connexion projective" , Gauthier-Villars (1937)
[3] S. Kobayashi, T. Nagano, "On projective connections" J. Math. and Mech. , 13 : 2 (1964) pp. 215–235

Comments

References

[a1] S. Kobayashi, "Transformation groups in differential geometry" , Springer (1972)
How to Cite This Entry:
Projective connection. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Projective_connection&oldid=48316
This article was adapted from an original article by Ü. Lumiste (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article