Namespaces
Variants
Actions

Difference between revisions of "Principal normal"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Normal|normal]] to a curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074750/p0747501.png" /> passing through a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074750/p0747502.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074750/p0747503.png" /> and lying in the [[Osculating plane|osculating plane]] to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074750/p0747504.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074750/p0747505.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074750/p0747506.png" /> is the parametric equation of the curve and the value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074750/p0747507.png" /> corresponds to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074750/p0747508.png" />, then the equation of the principal normal in vector form is:
+
<!--
 +
p0747501.png
 +
$#A+1 = 9 n = 0
 +
$#C+1 = 9 : ~/encyclopedia/old_files/data/P074/P.0704750 Principal normal
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074750/p0747509.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
 +
A [[Normal|normal]] to a curve  $  L $
 +
passing through a point  $  M _ {0} $
 +
of  $  L $
 +
and lying in the [[Osculating plane|osculating plane]] to  $  L $
 +
at  $  M _ {0} $.
 +
If  $  \mathbf r = \mathbf r ( t) $
 +
is the parametric equation of the curve and the value  $  t _ {0} $
 +
corresponds to  $  M _ {0} $,
 +
then the equation of the principal normal in vector form is:
  
 +
$$
 +
\mathbf r  =  \mathbf r ( t _ {0} ) + \lambda \mathbf r  ^ {\prime\prime} ( t _ {0} ).
 +
$$
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.J. Struik,  "Lectures in classical differential calculus" , Dover, reprint  (1988)  pp. 13</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R.S. Millman,  G.D. Parker,  "Elements of differential geometry" , Prentice-Hall  (1977)  pp. 26</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.J. Struik,  "Lectures in classical differential calculus" , Dover, reprint  (1988)  pp. 13</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R.S. Millman,  G.D. Parker,  "Elements of differential geometry" , Prentice-Hall  (1977)  pp. 26</TD></TR></table>

Latest revision as of 08:07, 6 June 2020


A normal to a curve $ L $ passing through a point $ M _ {0} $ of $ L $ and lying in the osculating plane to $ L $ at $ M _ {0} $. If $ \mathbf r = \mathbf r ( t) $ is the parametric equation of the curve and the value $ t _ {0} $ corresponds to $ M _ {0} $, then the equation of the principal normal in vector form is:

$$ \mathbf r = \mathbf r ( t _ {0} ) + \lambda \mathbf r ^ {\prime\prime} ( t _ {0} ). $$

Comments

References

[a1] D.J. Struik, "Lectures in classical differential calculus" , Dover, reprint (1988) pp. 13
[a2] R.S. Millman, G.D. Parker, "Elements of differential geometry" , Prentice-Hall (1977) pp. 26
How to Cite This Entry:
Principal normal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Principal_normal&oldid=15541
This article was adapted from an original article by E.V. Shikin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article