Namespaces
Variants
Actions

Difference between revisions of "Principal fibre bundle"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A [[G-fibration|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p0746901.png" />-fibration]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p0746902.png" /> such that the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p0746903.png" /> acts freely and perfectly on the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p0746904.png" />. The significance of principal fibre bundles lies in the fact that they make it possible to construct associated fibre bundles with fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p0746905.png" /> if a representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p0746906.png" /> in the group of homeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p0746907.png" /> is given. Differentiable principal fibre bundles with Lie groups play an important role in the theory of connections and holonomy groups. For instance, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p0746908.png" /> be a topological group with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p0746909.png" /> as a closed subgroup and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469010.png" /> be the homogeneous space of left cosets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469011.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469012.png" />; the fibre bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469013.png" /> will then be principal. Further, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469014.png" /> be a Milnor construction, i.e. the join of an infinite number of copies of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469015.png" />, each point of which has the form
+
<!--
 +
p0746901.png
 +
$#A+1 = 75 n = 0
 +
$#C+1 = 75 : ~/encyclopedia/old_files/data/P074/P.0704690 Principal fibre bundle
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469016.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469018.png" />, and where only finitely many <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469019.png" /> are non-zero. The action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469020.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469021.png" /> defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469022.png" /> is free, and the fibre bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469023.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469024.png" /> is a numerable principal fibre bundle.
+
A [[G-fibration| $  G $-
 +
fibration]]  $  \pi _ {G} : X \rightarrow B $
 +
such that the group  $  G $
 +
acts freely and perfectly on the space  $  X $.  
 +
The significance of principal fibre bundles lies in the fact that they make it possible to construct associated fibre bundles with fibre  $  F $
 +
if a representation of  $  G $
 +
in the group of homeomorphisms  $  F $
 +
is given. Differentiable principal fibre bundles with Lie groups play an important role in the theory of connections and holonomy groups. For instance, let  $  H $
 +
be a topological group with  $  G $
 +
as a closed subgroup and let  $  H/G $
 +
be the homogeneous space of left cosets of  $  H $
 +
with respect to  $  G $;
 +
the fibre bundle $  \pi _ {G} : H \rightarrow H/G $
 +
will then be principal. Further, let  $  X _ {G} $
 +
be a Milnor construction, i.e. the join of an infinite number of copies of  $  G $,
 +
each point of which has the form
  
Each fibre of a principal fibre bundle is homeomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469025.png" />.
+
$$
 +
\langle  g, t \rangle  = \langle  g _ {0} t _ {0} , g _ {1} t _ {1} ,\dots \rangle ,
 +
$$
  
A morphism of principal fibre bundles is a morphism of the fibre bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469026.png" /> for which the mapping of the fibres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469027.png" /> induces a homomorphism of groups:
+
where  $  g _ {i} \in G $,
 +
$  t _ {i} \in [ 0, 1] $,
 +
and where only finitely many  $  t _ {i} $
 +
are non-zero. The action of $  G $
 +
on  $  X _ {G} $
 +
defined by the formula  $  h \langle  g, t\rangle = \langle  hg, t\rangle $
 +
is free, and the fibre bundle  $  \omega _ {G} : X _ {G} \rightarrow X _ {G} $
 +
$  \mathop{\rm mod}  G $
 +
is a numerable principal fibre bundle.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469028.png" /></td> </tr></table>
+
Each fibre of a principal fibre bundle is homeomorphic to  $  G $.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469030.png" />. In particular, a morphism is called equivariant if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469031.png" /> is independent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469032.png" />, so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469033.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469035.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469037.png" />, an equivariant morphism is called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469038.png" />-morphism. Any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469040.png" />-morphism (i.e. a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469042.png" />-morphism over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469043.png" />) is called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469045.png" />-isomorphism.
+
A morphism of principal fibre bundles is a morphism of the fibre bundles  $  f: \pi _ {G} \rightarrow \pi _ {G  ^  \prime  } $
 +
for which the mapping of the fibres  $  f {\pi _ {G} }  ^ {-} 1 ( b) $
 +
induces a homomorphism of groups:
  
For any mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469046.png" /> and principal fibre bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469047.png" /> the [[Induced fibre bundle|induced fibre bundle]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469048.png" /> is principal with the same group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469049.png" />; moreover, the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469050.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469051.png" />-morphism which unambiguously determines the action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469052.png" /> on the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469053.png" />. For instance, if the principal fibre bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469054.png" /> is trivial, it is isomorphic to the principal fibre bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469055.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469056.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469057.png" />-bundle over a single point and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469058.png" /> is the constant mapping. The converse is also true, and for this reason principal fibre bundles with a section are trivial. For each numerable principal fibre bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469059.png" /> there exists a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469060.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469061.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469062.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469063.png" />-isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469064.png" />, and for the principal fibre bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469066.png" /> to be isomorphic, it is necessary and sufficient that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469067.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469068.png" /> be homotopic (cf. [[Homotopy|Homotopy]]). This is the principal theorem on the homotopy classification of principal fibre bundles, which expresses the universality of the principal fibre bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469069.png" /> (obtained by Milnor's construction), with respect to the classifying mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469070.png" />.
+
$$
 +
\theta _ {b}  = \
 +
\xi _ {b} ^ {\prime - 1 } f \pi _ {G}  ^ {-} 1 ( b) \xi _ {b} : \
 +
G  \rightarrow  G  ^  \prime  ,
 +
$$
 +
 
 +
where  $  \xi _ {b} ( g) = gx $,
 +
$  \pi _ {G} ( x) = b $.
 +
In particular, a morphism is called equivariant if  $  \theta _ {b} = \theta $
 +
is independent of  $  b $,
 +
so that  $  gf ( x) = \theta ( g) f ( x) $
 +
for any $  x \in X $,
 +
$  g \in G $.
 +
If  $  G = G  ^  \prime  $
 +
and  $  \theta = \mathop{\rm id} $,
 +
an equivariant morphism is called a  $  G $-
 +
morphism. Any  $  ( G, B) $-
 +
morphism (i.e. a  $  G $-
 +
morphism over  $  B $)
 +
is called a  $  G $-
 +
isomorphism.
 +
 
 +
For any mapping  $  u:  B  ^  \prime  \rightarrow B $
 +
and principal fibre bundle $  \pi _ {G} : X \rightarrow B $
 +
the [[Induced fibre bundle|induced fibre bundle]] $  u  ^ {*} ( \pi _ {G} ) \rightarrow \pi _ {G} $
 +
is principal with the same group $  G $;  
 +
moreover, the mapping $  U: u  ^ {*} ( \pi _ {G} ) \rightarrow \pi _ {G} $
 +
is a $  G $-
 +
morphism which unambiguously determines the action of $  G $
 +
on the space $  u  ^ {*} ( x) $.  
 +
For instance, if the principal fibre bundle $  \pi _ {G} $
 +
is trivial, it is isomorphic to the principal fibre bundle $  \phi  ^ {*} ( \eta ) $,  
 +
where $  \eta $
 +
is the $  G $-
 +
bundle over a single point and $  \phi $
 +
is the constant mapping. The converse is also true, and for this reason principal fibre bundles with a section are trivial. For each numerable principal fibre bundle $  \pi _ {G} : X \rightarrow B $
 +
there exists a mapping $  f: B \rightarrow X _ {G} $
 +
$  \mathop{\rm mod}  G $
 +
such that $  f ^ { * } ( \omega _ {G} ) $
 +
is $  G $-
 +
isomorphic to $  \pi _ {G} $,  
 +
and for the principal fibre bundles $  f _ {0} ^ { * } ( \omega _ {G} ) $
 +
and $  f _ {1} ^ { * } ( \omega _ {G} ) $
 +
to be isomorphic, it is necessary and sufficient that $  f _ {0} $
 +
and $  f _ {1} $
 +
be homotopic (cf. [[Homotopy|Homotopy]]). This is the principal theorem on the homotopy classification of principal fibre bundles, which expresses the universality of the principal fibre bundle $  \omega _ {G} $(
 +
obtained by Milnor's construction), with respect to the classifying mapping $  f $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R.L. Bishop,  R.J. Crittenden,  "Geometry of manifolds" , Acad. Press  (1964)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  K. Nomizu,  "Lie groups and differential geometry" , Math. Soc. Japan  (1956)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. Sternberg,  "Lectures on differential geometry" , Prentice-Hall  (1964)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> , ''Fibre spaces and their applications'' , Moscow  (1958)  (In Russian; translated from English)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N.E. Steenrod,  "The topology of fibre bundles" , Princeton Univ. Press  (1951)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  D. Husemoller,  "Fibre bundles" , McGraw-Hill  (1966)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R.L. Bishop,  R.J. Crittenden,  "Geometry of manifolds" , Acad. Press  (1964)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  K. Nomizu,  "Lie groups and differential geometry" , Math. Soc. Japan  (1956)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. Sternberg,  "Lectures on differential geometry" , Prentice-Hall  (1964)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> , ''Fibre spaces and their applications'' , Moscow  (1958)  (In Russian; translated from English)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N.E. Steenrod,  "The topology of fibre bundles" , Princeton Univ. Press  (1951)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  D. Husemoller,  "Fibre bundles" , McGraw-Hill  (1966)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469071.png" /> be a principal fibre bundle. It is called numerable if there is a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469072.png" /> of continuous mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469073.png" /> such that the open sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469074.png" /> form an open covering (cf. [[Covering (of a set)|Covering (of a set)]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469075.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469076.png" /> is trivializable over each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469077.png" /> (i.e. the restricted bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074690/p07469078.png" /> are trivial, cf. [[Fibre space|Fibre space]]).
+
Let $  \pi _ {G} : X \rightarrow B $
 +
be a principal fibre bundle. It is called numerable if there is a sequence $  ( u _ {n} ) _ {n \geq  0 }  $
 +
of continuous mappings $  B \rightarrow [ 0, 1] $
 +
such that the open sets $  U _ {n} = u _ {n}  ^ {-} 1 (( 0, 1 ] ) $
 +
form an open covering (cf. [[Covering (of a set)|Covering (of a set)]]) of $  B $
 +
and $  X $
 +
is trivializable over each $  U _ {n} $(
 +
i.e. the restricted bundles $  \pi _ {G} : X \rightarrow U _ {n} $
 +
are trivial, cf. [[Fibre space|Fibre space]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Dieudonné,  "A history of algebraic and differential topology 1900–1960" , Birkhäuser  (1989)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J. Dieudonné,  "A history of algebraic and differential topology 1900–1960" , Birkhäuser  (1989)</TD></TR></table>

Revision as of 08:07, 6 June 2020


A $ G $- fibration $ \pi _ {G} : X \rightarrow B $ such that the group $ G $ acts freely and perfectly on the space $ X $. The significance of principal fibre bundles lies in the fact that they make it possible to construct associated fibre bundles with fibre $ F $ if a representation of $ G $ in the group of homeomorphisms $ F $ is given. Differentiable principal fibre bundles with Lie groups play an important role in the theory of connections and holonomy groups. For instance, let $ H $ be a topological group with $ G $ as a closed subgroup and let $ H/G $ be the homogeneous space of left cosets of $ H $ with respect to $ G $; the fibre bundle $ \pi _ {G} : H \rightarrow H/G $ will then be principal. Further, let $ X _ {G} $ be a Milnor construction, i.e. the join of an infinite number of copies of $ G $, each point of which has the form

$$ \langle g, t \rangle = \langle g _ {0} t _ {0} , g _ {1} t _ {1} ,\dots \rangle , $$

where $ g _ {i} \in G $, $ t _ {i} \in [ 0, 1] $, and where only finitely many $ t _ {i} $ are non-zero. The action of $ G $ on $ X _ {G} $ defined by the formula $ h \langle g, t\rangle = \langle hg, t\rangle $ is free, and the fibre bundle $ \omega _ {G} : X _ {G} \rightarrow X _ {G} $ $ \mathop{\rm mod} G $ is a numerable principal fibre bundle.

Each fibre of a principal fibre bundle is homeomorphic to $ G $.

A morphism of principal fibre bundles is a morphism of the fibre bundles $ f: \pi _ {G} \rightarrow \pi _ {G ^ \prime } $ for which the mapping of the fibres $ f {\pi _ {G} } ^ {-} 1 ( b) $ induces a homomorphism of groups:

$$ \theta _ {b} = \ \xi _ {b} ^ {\prime - 1 } f \pi _ {G} ^ {-} 1 ( b) \xi _ {b} : \ G \rightarrow G ^ \prime , $$

where $ \xi _ {b} ( g) = gx $, $ \pi _ {G} ( x) = b $. In particular, a morphism is called equivariant if $ \theta _ {b} = \theta $ is independent of $ b $, so that $ gf ( x) = \theta ( g) f ( x) $ for any $ x \in X $, $ g \in G $. If $ G = G ^ \prime $ and $ \theta = \mathop{\rm id} $, an equivariant morphism is called a $ G $- morphism. Any $ ( G, B) $- morphism (i.e. a $ G $- morphism over $ B $) is called a $ G $- isomorphism.

For any mapping $ u: B ^ \prime \rightarrow B $ and principal fibre bundle $ \pi _ {G} : X \rightarrow B $ the induced fibre bundle $ u ^ {*} ( \pi _ {G} ) \rightarrow \pi _ {G} $ is principal with the same group $ G $; moreover, the mapping $ U: u ^ {*} ( \pi _ {G} ) \rightarrow \pi _ {G} $ is a $ G $- morphism which unambiguously determines the action of $ G $ on the space $ u ^ {*} ( x) $. For instance, if the principal fibre bundle $ \pi _ {G} $ is trivial, it is isomorphic to the principal fibre bundle $ \phi ^ {*} ( \eta ) $, where $ \eta $ is the $ G $- bundle over a single point and $ \phi $ is the constant mapping. The converse is also true, and for this reason principal fibre bundles with a section are trivial. For each numerable principal fibre bundle $ \pi _ {G} : X \rightarrow B $ there exists a mapping $ f: B \rightarrow X _ {G} $ $ \mathop{\rm mod} G $ such that $ f ^ { * } ( \omega _ {G} ) $ is $ G $- isomorphic to $ \pi _ {G} $, and for the principal fibre bundles $ f _ {0} ^ { * } ( \omega _ {G} ) $ and $ f _ {1} ^ { * } ( \omega _ {G} ) $ to be isomorphic, it is necessary and sufficient that $ f _ {0} $ and $ f _ {1} $ be homotopic (cf. Homotopy). This is the principal theorem on the homotopy classification of principal fibre bundles, which expresses the universality of the principal fibre bundle $ \omega _ {G} $( obtained by Milnor's construction), with respect to the classifying mapping $ f $.

References

[1] R.L. Bishop, R.J. Crittenden, "Geometry of manifolds" , Acad. Press (1964)
[2] K. Nomizu, "Lie groups and differential geometry" , Math. Soc. Japan (1956)
[3] S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964)
[4] , Fibre spaces and their applications , Moscow (1958) (In Russian; translated from English)
[5] N.E. Steenrod, "The topology of fibre bundles" , Princeton Univ. Press (1951)
[6] D. Husemoller, "Fibre bundles" , McGraw-Hill (1966)

Comments

Let $ \pi _ {G} : X \rightarrow B $ be a principal fibre bundle. It is called numerable if there is a sequence $ ( u _ {n} ) _ {n \geq 0 } $ of continuous mappings $ B \rightarrow [ 0, 1] $ such that the open sets $ U _ {n} = u _ {n} ^ {-} 1 (( 0, 1 ] ) $ form an open covering (cf. Covering (of a set)) of $ B $ and $ X $ is trivializable over each $ U _ {n} $( i.e. the restricted bundles $ \pi _ {G} : X \rightarrow U _ {n} $ are trivial, cf. Fibre space).

References

[a1] J. Dieudonné, "A history of algebraic and differential topology 1900–1960" , Birkhäuser (1989)
How to Cite This Entry:
Principal fibre bundle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Principal_fibre_bundle&oldid=16858
This article was adapted from an original article by A.F. Shchekut'ev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article