From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 06A75 [MSN][ZBL]

quasi-order, pre-ordering, quasi-ordering, weak order, preference

A reflexive and transitive binary relation on a set. A complete pre-order is one in which any two elements are comparable. If $\leq$ is a pre-order on a set $M$, then the indifference relation $a\sim b$ if and only if $a\leq b$ and $b\leq a$, $a,b\in M$, is an equivalence on $M$. The pre-order $\leq$ induces an order relation (cf. also Order (on a set)) on the quotient set $M/\sim$.

In mathematical economics and social choice theory, a complete pre-order is often termed a preference relation. In utility theory, preferences on a set $M$ are obtained from a real-valued utility function $u$ with $a \leq b$ if $u(a) \leq u(b)$.


  • Caspard, Nathalie; Leclerc, Bruno; Monjardet, Bernard "Finite ordered sets. Concepts, results and uses". Encyclopedia of Mathematics and its Applications 144 Cambridge University Press (2012) ISBN 978-1-107-01369-8 Zbl 1238.06001
How to Cite This Entry:
Pre-order. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by T.S. Fofanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article