Namespaces
Variants
Actions

Difference between revisions of "Pre-order"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(MSC 06A75)
Line 1: Line 1:
{{TEX|done}}
+
{{TEX|done}}{{MSC|06A75}}
 +
 
 
''quasi-order, pre-ordering, quasi-ordering''
 
''quasi-order, pre-ordering, quasi-ordering''
  
 
A reflexive and transitive [[Binary relation|binary relation]] on a set. If $\leq$ is a pre-order on a set $M$, then the relation $a\tilde{}b$ if and only if $a\leq b$ and $b\leq a$, $a,b\in M$, is an [[Equivalence|equivalence]] on $M$. The pre-order $\leq$ induces an [[Order relation|order relation]] (cf. also [[Order (on a set)|Order (on a set)]]) on the quotient set $M/\tilde{}$.
 
A reflexive and transitive [[Binary relation|binary relation]] on a set. If $\leq$ is a pre-order on a set $M$, then the relation $a\tilde{}b$ if and only if $a\leq b$ and $b\leq a$, $a,b\in M$, is an [[Equivalence|equivalence]] on $M$. The pre-order $\leq$ induces an [[Order relation|order relation]] (cf. also [[Order (on a set)|Order (on a set)]]) on the quotient set $M/\tilde{}$.

Revision as of 20:23, 19 December 2014

2020 Mathematics Subject Classification: Primary: 06A75 [MSN][ZBL]

quasi-order, pre-ordering, quasi-ordering

A reflexive and transitive binary relation on a set. If $\leq$ is a pre-order on a set $M$, then the relation $a\tilde{}b$ if and only if $a\leq b$ and $b\leq a$, $a,b\in M$, is an equivalence on $M$. The pre-order $\leq$ induces an order relation (cf. also Order (on a set)) on the quotient set $M/\tilde{}$.

How to Cite This Entry:
Pre-order. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pre-order&oldid=31681
This article was adapted from an original article by T.S. Fofanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article