# Power-full number

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 11A05 [MSN][ZBL]

of type $k$

A natural number $n$ with the property that if a prime $p$ divides $n$, then $p^k$ divides $n$. A square-full number is a power-full number of type 2; a cube-full number is a power-full number of type 3.

If $N_k(x)$ counts the $k$-full numbers $\le x$, then $$N_2(x) = \frac{\zeta\left({\frac{3}{2}}\right) }{\zeta(3) } x^{\frac{1}{2}} + \frac{\zeta\left({\frac{2}{3}}\right) }{\zeta(2) } x^{\frac{1}{3}} + o\left({x^{\frac{1}{6}}}\right)$$ where $\zeta(s)$ is the Riemann zeta function‏. Similarly, $$N_3(x) = c_{03} x^{\frac{1}{3}} + c_{13} x^{\frac{1}{4}} + c_{23} x^{\frac{1}{5}} + o\left({ x^{\frac{1}{8}} }\right)$$ and generally $$N_k(x) = c_{0k} x^{1/k} + O(x^{1/(k+1)})$$ where $$c_{0k} = \prod_p \left({ 1 + \sum_{m=k+1}^{2k-1} p^{-m/k} }\right) \ .$$ The $c_{\circ k}$ are the Bateman–Grosswald constants.

## References

 [BG] Paul T. Bateman, Emil Grosswald, "On a theorem of Erdős and Szekeres" Ill. J. Math. 2 (1958) 88-98 Zbl 0079.07104 [Fi] Steven R. Finch, "Mathematical Constants", Cambridge University Press (2003) ISBN 0-521-81805-2 Zbl 1054.00001 [Gu] Richard K. Guy, Unsolved Problems in Number Theory 3rd ed. Springer-Verlag (2004) ISBN 0-387-20860-7 Zbl 1058.11001
How to Cite This Entry:
Power-full number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Power-full_number&oldid=54594