Namespaces
Variants
Actions

Difference between revisions of "Pontryagin character"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p0737401.png" />''
+
<!--
 +
p0737401.png
 +
$#A+1 = 27 n = 0
 +
$#C+1 = 27 : ~/encyclopedia/old_files/data/P073/P.0703740 Pontryagin character
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The [[Characteristic class|characteristic class]] defined by the equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p0737402.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p0737403.png" /> is the complexification of the fibre bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p0737404.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p0737405.png" /> is the [[Chern character|Chern character]]. The Pontryagin character as an element of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p0737406.png" /> is determined by the even series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p0737407.png" /> and has the following properties
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p0737408.png" /></td> </tr></table>
+
'' $  \mathop{\rm ph} $''
  
The index class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p0737409.png" /> is defined to be equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374010.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374011.png" /> is the [[Todd class|Todd class]]. The index class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374012.png" /> is expressed in Wu generators (see [[Characteristic class|Characteristic class]]) by the formula
+
The [[Characteristic class|characteristic class]] defined by the equality  $  \mathop{\rm ph} ( \xi ) = \mathop{\rm ch} ( \xi \otimes \mathbf C ) $,  
 +
where $  \xi \otimes \mathbf C $
 +
is the complexification of the fibre bundle  $  \xi $
 +
and  $  \mathop{\rm ch} $
 +
is the [[Chern character|Chern character]]. The Pontryagin character as an element of the ring  $  H  ^ {**} (  \mathop{\rm BO} _ {n} ;  \mathbf Q ) $
 +
is determined by the even series  $  \sum _ {i=} 1  ^ {[} n/2] ( e ^ {x _ {i} } + e ^ {- x _ {i} } ) $
 +
and has the following properties
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374013.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm ph} ( \xi \otimes \eta )  =   \mathop{\rm ph}  \xi \cdot  \mathop{\rm ph}  \eta ,\ \
 +
\mathop{\rm ph} ( \xi \oplus \eta )  =   \mathop{\rm ph}  \xi +  \mathop{\rm ph}  \eta .
 +
$$
  
The following theorem on the relationship between the Pontryagin class and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374014.png" />-class holds (cf. [[Pontryagin class|Pontryagin class]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374015.png" /> be a real vector bundle over the base <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374016.png" /> with a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374017.png" />-structure, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374018.png" />. For such bundles there is the Thom isomorphism in real [[K-theory|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374020.png" />-theory]]:
+
The index class $  I ( \xi ) $
 +
is defined to be equal to  $  T ( \xi \otimes \mathbf C ) $,
 +
where  $  T \in H  ^ {**} (  \mathop{\rm BU} _ {n} ;  \mathbf Q ) $
 +
is the [[Todd class|Todd class]]. The index class  $  I \in H  ^ {**} (  \mathop{\rm BO} _ {n} ;  \mathbf Q ) $
 +
is expressed in Wu generators (see [[Characteristic class|Characteristic class]]) by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374021.png" /></td> </tr></table>
+
$$
 +
I  =  \prod
 +
\frac{x _ {i} }{1 - e ^ {- x _ {i} } }
 +
\prod
 +
 
 +
\frac{- x _ {i} }{1 - e ^ {x _ {i} } }
 +
.
 +
$$
 +
 
 +
The following theorem on the relationship between the Pontryagin class and the  $  \widehat{A}  $-
 +
class holds (cf. [[Pontryagin class|Pontryagin class]]). Let  $  \xi $
 +
be a real vector bundle over the base  $  B $
 +
with a  $  \mathop{\rm Spin} _ {n} $-
 +
structure,  $  n = \mathop{\rm dim}  \xi = 8 k $.
 +
For such bundles there is the Thom isomorphism in real [[K-theory| $  K $-
 +
theory]]:
 +
 
 +
$$
 +
\Phi :   \mathop{\rm KO}  ^ {*} ( B)  \rightarrow  \mathop{\rm KO} tilde {}  ^ {*} ( B  ^  \xi  ) .
 +
$$
  
 
Let
 
Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374022.png" /></td> </tr></table>
+
$$
 +
\Phi _ {H} : H  ^ {*} ( B ; \mathbf Q )  \rightarrow  \widetilde{H}  {}  ^ {*} ( B  ^  \xi  ; \
 +
\mathbf Q )
 +
$$
  
be the Thom isomorphism, which is uniquely determined by the orientation of the bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374023.png" />. Then
+
be the Thom isomorphism, which is uniquely determined by the orientation of the bundle $  \xi $.  
 +
Then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374024.png" /></td> </tr></table>
+
$$
 +
\Phi _ {H}  ^ {-} 1  \mathop{\rm ph} ( \Phi ( 1))  = \widehat{A}  ( - \xi ) .
 +
$$
  
 
This formula is an exact analogue of the corresponding statement on the relationship between the Chern character and the Todd class.
 
This formula is an exact analogue of the corresponding statement on the relationship between the Chern character and the Todd class.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374025.png" /> is a complex vector bundle, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374026.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374027.png" /> is the real part of the bundle, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073740/p07374028.png" /> is the Todd class.
+
If $  \xi $
 +
is a complex vector bundle, then $  T ( \xi ) = \widehat{A}  ( ( \xi ) _ {\mathbf R }  ) e ^ {c _ {1} ( \xi ) / 2 } $.  
 +
Here $  ( \xi ) _ {\mathbf R }  $
 +
is the real part of the bundle, and $  T $
 +
is the Todd class.
  
 
For references see [[Pontryagin class|Pontryagin class]].
 
For references see [[Pontryagin class|Pontryagin class]].

Revision as of 08:06, 6 June 2020


$ \mathop{\rm ph} $

The characteristic class defined by the equality $ \mathop{\rm ph} ( \xi ) = \mathop{\rm ch} ( \xi \otimes \mathbf C ) $, where $ \xi \otimes \mathbf C $ is the complexification of the fibre bundle $ \xi $ and $ \mathop{\rm ch} $ is the Chern character. The Pontryagin character as an element of the ring $ H ^ {**} ( \mathop{\rm BO} _ {n} ; \mathbf Q ) $ is determined by the even series $ \sum _ {i=} 1 ^ {[} n/2] ( e ^ {x _ {i} } + e ^ {- x _ {i} } ) $ and has the following properties

$$ \mathop{\rm ph} ( \xi \otimes \eta ) = \mathop{\rm ph} \xi \cdot \mathop{\rm ph} \eta ,\ \ \mathop{\rm ph} ( \xi \oplus \eta ) = \mathop{\rm ph} \xi + \mathop{\rm ph} \eta . $$

The index class $ I ( \xi ) $ is defined to be equal to $ T ( \xi \otimes \mathbf C ) $, where $ T \in H ^ {**} ( \mathop{\rm BU} _ {n} ; \mathbf Q ) $ is the Todd class. The index class $ I \in H ^ {**} ( \mathop{\rm BO} _ {n} ; \mathbf Q ) $ is expressed in Wu generators (see Characteristic class) by the formula

$$ I = \prod \frac{x _ {i} }{1 - e ^ {- x _ {i} } } \prod \frac{- x _ {i} }{1 - e ^ {x _ {i} } } . $$

The following theorem on the relationship between the Pontryagin class and the $ \widehat{A} $- class holds (cf. Pontryagin class). Let $ \xi $ be a real vector bundle over the base $ B $ with a $ \mathop{\rm Spin} _ {n} $- structure, $ n = \mathop{\rm dim} \xi = 8 k $. For such bundles there is the Thom isomorphism in real $ K $- theory:

$$ \Phi : \mathop{\rm KO} ^ {*} ( B) \rightarrow \mathop{\rm KO} tilde {} ^ {*} ( B ^ \xi ) . $$

Let

$$ \Phi _ {H} : H ^ {*} ( B ; \mathbf Q ) \rightarrow \widetilde{H} {} ^ {*} ( B ^ \xi ; \ \mathbf Q ) $$

be the Thom isomorphism, which is uniquely determined by the orientation of the bundle $ \xi $. Then

$$ \Phi _ {H} ^ {-} 1 \mathop{\rm ph} ( \Phi ( 1)) = \widehat{A} ( - \xi ) . $$

This formula is an exact analogue of the corresponding statement on the relationship between the Chern character and the Todd class.

If $ \xi $ is a complex vector bundle, then $ T ( \xi ) = \widehat{A} ( ( \xi ) _ {\mathbf R } ) e ^ {c _ {1} ( \xi ) / 2 } $. Here $ ( \xi ) _ {\mathbf R } $ is the real part of the bundle, and $ T $ is the Todd class.

For references see Pontryagin class.

How to Cite This Entry:
Pontryagin character. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pontryagin_character&oldid=16666
This article was adapted from an original article by A.F. Kharshiladze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article