Namespaces
Variants
Actions

Pole (of a function)

From Encyclopedia of Mathematics
Revision as of 17:14, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

An isolated singular point of single-valued character of an analytic function of the complex variable for which increases without bound when approaches : . In a sufficiently small punctured neighbourhood of the point , or in the case of the point at infinity , the function can be written as a Laurent series of special form:

(1)

or, respectively,

(2)

with finitely many negative exponents if , or, respectively, finitely many positive exponents if . The natural number in these expressions is called the order, or multiplicity, of the pole ; when the pole is called simple. The expressions (1) and (2) show that the function if , or if , can be analytically continued (cf. Analytic continuation) to a full neighbourhood of the pole , and, moreover, . Alternatively, a pole of order can also be characterized by the fact that the function has a zero of multiplicity at .

A point of the complex space , , is called a pole of the analytic function of several complex variables if the following conditions are satisfied: 1) is holomorphic everywhere in some neighbourhood of except at a set , ; 2) cannot be analytically continued to any point of ; and 3) there exists a function , holomorphic in , such that the function , which is holomorphic in , can be holomorphically continued to the full neighbourhood , and, moreover, . Here also

however, for , poles, as with singular points in general, cannot be isolated.

References

[1] B.V. Shabat, "Introduction of complex analysis" , 2 , Moscow (1976) (In Russian)


Comments

For see [a1]. For see [a2][a3].

For the use of poles in the representation of analytic functions see Integral representation of an analytic function; Cauchy integral.

References

[a1] L.V. Ahlfors, "Complex analysis" , McGraw-Hill (1979) pp. Chapt. 8
[a2] H. Grauert, K. Fritzsche, "Several complex variables" , Springer (1976) (Translated from German)
[a3] R.M. Range, "Holomorphic functions and integral representation in several complex variables" , Springer (1986) pp. Chapt. 1, Sect. 3
How to Cite This Entry:
Pole (of a function). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pole_(of_a_function)&oldid=15756
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article