Namespaces
Variants
Actions

Difference between revisions of "Poincaré duality"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (moved Poincare duality to Poincaré duality over redirect: accented title)
m (tex encoded by computer)
Line 1: Line 1:
An isomorphism between the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p0730201.png" />-dimensional homology groups (or modules) of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p0730202.png" />-dimensional manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p0730203.png" /> (including a generalized manifold) with coefficients in a locally constant system of groups (modules) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p0730204.png" />, each isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p0730205.png" />, and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p0730206.png" />-dimensional cohomology groups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p0730207.png" /> with coefficients in an orientation sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p0730208.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p0730209.png" /> (the stalk of this sheaf at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302010.png" /> is the local homology group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302011.png" />). More exactly, the usual homology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302012.png" /> are isomorphic to the cohomology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302014.png" />, with compact support (cohomology groups  "of the second kind" ), while the homology groups  "of the second kind"  <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302015.png" /> (determined by  "infinite"  chains) are isomorphic to the usual cohomology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302016.png" />. In a more general form there are isomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302017.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302018.png" /> is any family of supports.
+
<!--
 +
p0730201.png
 +
$#A+1 = 88 n = 0
 +
$#C+1 = 88 : ~/encyclopedia/old_files/data/P073/P.0703020 Poincar\Aee duality
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
There are also analogous identifications between the homology and the cohomology of subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302019.png" /> and pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302020.png" /> (Poincaré–Lefschetz duality). Namely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302021.png" /> be an open or closed subspace in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302022.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302023.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302024.png" /> be the family of all those sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302025.png" /> which are contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302026.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302027.png" /> be the family of sets of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302029.png" />. Then the exact homology sequence of the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302030.png" />,
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302031.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
An isomorphism between the  $  p $-
 +
dimensional homology groups (or modules) of an  $  n $-
 +
dimensional manifold  $  M $(
 +
including a generalized manifold) with coefficients in a locally constant system of groups (modules)  $  {\mathcal G} $,
 +
each isomorphic to  $  G $,
 +
and the  $  ( n - p ) $-
 +
dimensional cohomology groups of  $  M $
 +
with coefficients in an orientation sheaf  $  {\mathcal H} _ {n} ( {\mathcal G} ) $
 +
over  $  M $(
 +
the stalk of this sheaf at the point  $  x \in M $
 +
is the local homology group  $  H _ {n}  ^ {x} = H _ {n} ( M , M \setminus  x;  {\mathcal G} ) $).
 +
More exactly, the usual homology groups  $  H _ {p}  ^ {c} ( M ;  {\mathcal G} ) $
 +
are isomorphic to the cohomology groups  $  H _ {c}  ^ {q} ( M ; {\mathcal H} _ {n} ( {\mathcal G} )) $,
 +
$  q = n - p $,
 +
with compact support (cohomology groups  "of the second kind" ), while the homology groups  "of the second kind"   $  H _ {p} ( M ;  {\mathcal G} ) $(
 +
determined by  "infinite" chains) are isomorphic to the usual cohomology groups  $  H  ^ {q} ( M ;  {\mathcal H} _ {n} ( {\mathcal G} )) $.  
 +
In a more general form there are isomorphisms  $  H _ {p}  ^  \Phi  ( M ;  {\mathcal G} ) = H _  \Phi  ^ {q} ( M ; {\mathcal H} _ {n} ( {\mathcal G} )) $,
 +
where  $  \Phi $
 +
is any family of supports.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302032.png" /></td> </tr></table>
+
There are also analogous identifications between the homology and the cohomology of subsets  $  A \subset  M $
 +
and pairs  $  ( M , A ) $(
 +
Poincaré–Lefschetz duality). Namely, let  $  A $
 +
be an open or closed subspace in  $  M $
 +
and let  $  B = M \setminus  A $.  
 +
Let  $  \Phi \mid  B $
 +
be the family of all those sets in  $  \Phi $
 +
which are contained in  $  B $
 +
and let  $  \Phi \cap A $
 +
be the family of sets of the form  $  F \cap A $,
 +
$  F \in \Phi $.  
 +
Then the exact homology sequence of the pair  $  ( M , B ) $,
  
coincides with the cohomology sequence of the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302033.png" />,
+
$$ \tag{* }
 +
\dots \rightarrow  H _ {p} ^ {\Phi \mid  B } ( B ;  {\mathcal G} ) \
 +
\rightarrow  H _ {p}  ^  \Phi  ( M ;  {\mathcal G} )  \rightarrow \
 +
H _ {p}  ^  \phi  ( M ;  B ;  {\mathcal G} ) \rightarrow
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302034.png" /></td> </tr></table>
+
$$
 +
\rightarrow \
 +
H _ {p-} 1 ^ {\Phi \mid  B } ( B ; {\mathcal G} )  \rightarrow \dots ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302035.png" /></td> </tr></table>
+
coincides with the cohomology sequence of the pair  $  ( M , A ) $,
  
The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302036.png" /> coincide with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302037.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302038.png" />, and with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302039.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302040.png" /> is the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302041.png" /> of all closed sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302042.png" /> and the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302043.png" /> is closed (in this case the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302044.png" /> in the first sequence can be omitted, and, moreover, there is an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302045.png" />). When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302047.png" /> is open, the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302048.png" /> can be omitted only in the second and third terms of the homology sequence, since the homology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302049.png" /> depend not only on the topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302050.png" /> but also on the inclusion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302051.png" />.
+
$$
 +
\dots \rightarrow  H _  \Phi  ^ {q} ( M , A ;  {\mathcal H} _ {n} ( {\mathcal G} ))  \rightarrow \
 +
H _  \Phi  ^ {q} ( M ;  {\mathcal H} _ {n} ( {\mathcal G} )) \rightarrow
 +
$$
  
When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302052.png" />, this symbol (together with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302053.png" />) can be omitted in the cohomology sequence of the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302054.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302055.png" /> is closed, then
+
$$
 +
\rightarrow \
 +
H _ {\Phi \cap A }  ^ {q} ( A ;  {\mathcal H} _ {n} ( {\mathcal G} ))  \rightarrow \
 +
H _  \Phi  ^ {q+} 1 ( M ;  A ;  {\mathcal H} _ {n} ( {\mathcal G} )) \rightarrow \dots .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302056.png" /></td> </tr></table>
+
The groups  $  H _ {p} ^ {\Phi \mid  B } ( B ;  {\mathcal G} ) = H _ {p} ^ {\Phi \mid  B } ( M ;  {\mathcal G} ) $
 +
coincide with  $  H _ {p}  ^ {c} ( B ; {\mathcal G} ) $
 +
when  $  \Phi = c $,
 +
and with  $  H _ {p} ( B ; {\mathcal G} ) $
 +
when  $  \Phi $
 +
is the family  $  \Psi $
 +
of all closed sets in  $  M $
 +
and the set  $  B $
 +
is closed (in this case the symbol  $  \Phi $
 +
in the first sequence can be omitted, and, moreover, there is an isomorphism  $  H _ {p} ( M , B ; {\mathcal G} ) = H _ {p} ( A ;  {\mathcal G} ) $).
 +
When  $  \Phi = \Psi $
 +
and  $  B $
 +
is open, the symbol  $  \Phi $
 +
can be omitted only in the second and third terms of the homology sequence, since the homology groups  $  H _ {p} ^ {\Phi \mid  B } ( B ;  {\mathcal G} ) $
 +
depend not only on the topological space  $  B $
 +
but also on the inclusion  $  B \subset  M $.
  
when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302057.png" />, the cohomology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302058.png" /> which occurs depends not only on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302059.png" /> but also on the inclusion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302060.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302061.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302062.png" /> is closed, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302063.png" /> can be replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302064.png" /> and in this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302065.png" /> is a cohomology group  "of the second kind" of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302066.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302067.png" /> but <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302068.png" /> is open, then the cohomology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302069.png" /> are not the same as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302070.png" /> (and depend on the inclusion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302071.png" />).
+
When  $  \Phi = \Psi $,  
 +
this symbol (together with  $  \Phi \cap A $)
 +
can be omitted in the cohomology sequence of the pair  $ ( M , A ) $.  
 +
If $  A $
 +
is closed, then
  
Poincaré–Lefschetz duality can easily be applied to describe a duality between the homology and the cohomology of a manifold with boundary. It is useful to bear in mind that, if all the non-zero stalks of the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302072.png" /> are isomorphic to the basic ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302073.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302074.png" />.
+
$$
 +
H _  \Phi  ^ {q} ( M , A ;  {\mathcal H} _ {n} ( {\mathcal G} ) )  = \
 +
H _ {\Phi \mid  B }  ^ {q} ( M ;  {\mathcal H} _ {n} ( {\mathcal G} )) \
 +
= H _ {\Phi \mid  B }  ^ {q} ( B ;  {\mathcal H} _ {n} ( {\mathcal G} )) ;
 +
$$
  
When the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302075.png" /> is locally constant, there exists a locally constant sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302076.png" />, unique up to an isomorphism, for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302077.png" />. Therefore, if in the homology sequence (*) the coefficient sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302078.png" /> is used instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302079.png" />, then in the cohomology sequence the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302080.png" /> appears (instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302081.png" />). Thus, the pre-assigned coefficients can appear in the duality isomorphism either in the homology or in the cohomology.
+
when  $  \Phi = \Psi $,
 +
the cohomology of  $  B $
 +
which occurs depends not only on  $  B $
 +
but also on the inclusion  $  B \subset  M $.
 +
If  $  \Phi = c $
 +
and  $  A $
 +
is closed, then  $  \Phi \cap A $
 +
can be replaced by  $  c $
 +
and in this case  $  H _ {c}  ^ {q} ( M ;  A ;  {\mathcal H} _ {n} ( {\mathcal G} ) ) = H _ {c}  ^ {q} ( B ;  {\mathcal H} _ {n} ( {\mathcal G} ) ) $
 +
is a cohomology group  "of the second kind" of the space  $  B $.
 +
If  $  \Phi = c $
 +
but  $  A $
 +
is open, then the cohomology groups  $  H _ {c \cap A }  ^ {q} ( A ;  {\mathcal H} _ {n} ( {\mathcal G} )) $
 +
are not the same as  $  H _ {c}  ^ {q} ( A ;  {\mathcal H} _ {n} ( {\mathcal G} )) $(
 +
and depend on the inclusion  $  A \subset  M $).
 +
 
 +
Poincaré–Lefschetz duality can easily be applied to describe a duality between the homology and the cohomology of a manifold with boundary. It is useful to bear in mind that, if all the non-zero stalks of the sheaf  $  {\mathcal H} _ {n} ( R) $
 +
are isomorphic to the basic ring  $  R $,
 +
then  $  {\mathcal H} _ {n} ( {\mathcal G} ) = {\mathcal H} _ {n} ( R) \otimes _ {R} {\mathcal G} $.
 +
 
 +
When the sheaf  $  {\mathcal H} _ {n} ( R) $
 +
is locally constant, there exists a locally constant sheaf $  {\mathcal L} ( R) $,  
 +
unique up to an isomorphism, for which $  {\mathcal L} ( R) \otimes _ {R} {\mathcal H} _ {n} ( R) = R $.  
 +
Therefore, if in the homology sequence (*) the coefficient sheaf $  {\mathcal L} ( R) \otimes _ {R} {\mathcal G} $
 +
is used instead of $  {\mathcal G} $,  
 +
then in the cohomology sequence the sheaf $  {\mathcal G} $
 +
appears (instead of $  {\mathcal H} _ {n} ( {\mathcal G} ) $).  
 +
Thus, the pre-assigned coefficients can appear in the duality isomorphism either in the homology or in the cohomology.
  
 
The most natural proof of Poincaré duality is obtained by means of sheaf theory. Poincaré duality in topology is a particular case of Poincaré-type duality relations which are true for derived functors in homological algebra (another particular case is Poincaré-type duality for homology and cohomology of groups).
 
The most natural proof of Poincaré duality is obtained by means of sheaf theory. Poincaré duality in topology is a particular case of Poincaré-type duality relations which are true for derived functors in homological algebra (another particular case is Poincaré-type duality for homology and cohomology of groups).
Line 29: Line 130:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.G. Sklyarenko,  "Homology and cohomology of general spaces"  ''Itogi Nauk. i Tekhn. Sovr. Probl. Mat.'' , '''50'''  (1989)  pp. Chapt. 8</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.G. Sklyarenko,  "Poincaré duality and relations between the functors Ext and Tor"  ''Math. Notes'' , '''28''' :  5  (1980)  pp. 841–845  ''Mat. Zametki'' , '''28''' :  5  (1980)  pp. 769–776</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  W.S. Massey,  "Homology and cohomology theory" , M. Dekker  (1978)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.G. Sklyarenko,  "Homology and cohomology of general spaces"  ''Itogi Nauk. i Tekhn. Sovr. Probl. Mat.'' , '''50'''  (1989)  pp. Chapt. 8</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.G. Sklyarenko,  "Poincaré duality and relations between the functors Ext and Tor"  ''Math. Notes'' , '''28''' :  5  (1980)  pp. 841–845  ''Mat. Zametki'' , '''28''' :  5  (1980)  pp. 769–776</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  W.S. Massey,  "Homology and cohomology theory" , M. Dekker  (1978)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
One of the simpler forms of Poincaré duality is as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302082.png" /> be a compact orientable manifold (cf. [[Orientation|Orientation]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302083.png" /> a fundamental class. Then the cap product with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302084.png" /> induces an isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302085.png" />, cf. [[#References|[a1]]]. A formulation using the slant product with an orientation class is given in [[#References|[a2]]]. Poincaré duality (for de Rham cohomology) can also be seen as coming from the natural pairing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302086.png" /> given by taking the wedge product of two differential forms followed by integration (with respect to a chosen volume form), giving <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302087.png" />, cf. [[#References|[a3]]]. For Poincaré duality in the case of generalized cohomology theories defined by a spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073020/p07302088.png" />, see [[#References|[a4]]].
+
One of the simpler forms of Poincaré duality is as follows. Let $  M  ^ {n} $
 +
be a compact orientable manifold (cf. [[Orientation|Orientation]]) and $  c _ {M} \in H _ {n} ( M;  \mathbf Z ) $
 +
a fundamental class. Then the cap product with $  c _ {M} $
 +
induces an isomorphism $  H  ^ {i} ( M ;  G) \rightarrow H _ {n-} i ( M ;  G) $,  
 +
cf. [[#References|[a1]]]. A formulation using the slant product with an orientation class is given in [[#References|[a2]]]. Poincaré duality (for de Rham cohomology) can also be seen as coming from the natural pairing $  H  ^ {q} ( M) \otimes H _ {c}  ^ {n-} q ( M) \rightarrow \mathbf R $
 +
given by taking the wedge product of two differential forms followed by integration (with respect to a chosen volume form), giving $  H  ^ {q} ( M) \simeq H _ {c}  ^ {n-} q ( M)  ^ {*} $,  
 +
cf. [[#References|[a3]]]. For Poincaré duality in the case of generalized cohomology theories defined by a spectrum $  E $,  
 +
see [[#References|[a4]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Dold,  "Lectures on algebraic topology" , Springer  (1972)  pp. Sect. VIII.8.1</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.H. Spanier,  "Algebraic topology" , McGraw-Hill  (1966)  pp. Sect. 6.2</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R. Bott,  L.W. Tu,  "Differential forms in algebraic topology" , Springer  (1982)  pp. Chapt. I, Sect. 5</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.M. Switzer,  "Algebraic topology - homotopy and homology" , Springer  (1975)  pp. 316</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Dold,  "Lectures on algebraic topology" , Springer  (1972)  pp. Sect. VIII.8.1</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.H. Spanier,  "Algebraic topology" , McGraw-Hill  (1966)  pp. Sect. 6.2</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  R. Bott,  L.W. Tu,  "Differential forms in algebraic topology" , Springer  (1982)  pp. Chapt. I, Sect. 5</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.M. Switzer,  "Algebraic topology - homotopy and homology" , Springer  (1975)  pp. 316</TD></TR></table>

Revision as of 08:06, 6 June 2020


An isomorphism between the $ p $- dimensional homology groups (or modules) of an $ n $- dimensional manifold $ M $( including a generalized manifold) with coefficients in a locally constant system of groups (modules) $ {\mathcal G} $, each isomorphic to $ G $, and the $ ( n - p ) $- dimensional cohomology groups of $ M $ with coefficients in an orientation sheaf $ {\mathcal H} _ {n} ( {\mathcal G} ) $ over $ M $( the stalk of this sheaf at the point $ x \in M $ is the local homology group $ H _ {n} ^ {x} = H _ {n} ( M , M \setminus x; {\mathcal G} ) $). More exactly, the usual homology groups $ H _ {p} ^ {c} ( M ; {\mathcal G} ) $ are isomorphic to the cohomology groups $ H _ {c} ^ {q} ( M ; {\mathcal H} _ {n} ( {\mathcal G} )) $, $ q = n - p $, with compact support (cohomology groups "of the second kind" ), while the homology groups "of the second kind" $ H _ {p} ( M ; {\mathcal G} ) $( determined by "infinite" chains) are isomorphic to the usual cohomology groups $ H ^ {q} ( M ; {\mathcal H} _ {n} ( {\mathcal G} )) $. In a more general form there are isomorphisms $ H _ {p} ^ \Phi ( M ; {\mathcal G} ) = H _ \Phi ^ {q} ( M ; {\mathcal H} _ {n} ( {\mathcal G} )) $, where $ \Phi $ is any family of supports.

There are also analogous identifications between the homology and the cohomology of subsets $ A \subset M $ and pairs $ ( M , A ) $( Poincaré–Lefschetz duality). Namely, let $ A $ be an open or closed subspace in $ M $ and let $ B = M \setminus A $. Let $ \Phi \mid B $ be the family of all those sets in $ \Phi $ which are contained in $ B $ and let $ \Phi \cap A $ be the family of sets of the form $ F \cap A $, $ F \in \Phi $. Then the exact homology sequence of the pair $ ( M , B ) $,

$$ \tag{* } \dots \rightarrow H _ {p} ^ {\Phi \mid B } ( B ; {\mathcal G} ) \ \rightarrow H _ {p} ^ \Phi ( M ; {\mathcal G} ) \rightarrow \ H _ {p} ^ \phi ( M ; B ; {\mathcal G} ) \rightarrow $$

$$ \rightarrow \ H _ {p-} 1 ^ {\Phi \mid B } ( B ; {\mathcal G} ) \rightarrow \dots , $$

coincides with the cohomology sequence of the pair $ ( M , A ) $,

$$ \dots \rightarrow H _ \Phi ^ {q} ( M , A ; {\mathcal H} _ {n} ( {\mathcal G} )) \rightarrow \ H _ \Phi ^ {q} ( M ; {\mathcal H} _ {n} ( {\mathcal G} )) \rightarrow $$

$$ \rightarrow \ H _ {\Phi \cap A } ^ {q} ( A ; {\mathcal H} _ {n} ( {\mathcal G} )) \rightarrow \ H _ \Phi ^ {q+} 1 ( M ; A ; {\mathcal H} _ {n} ( {\mathcal G} )) \rightarrow \dots . $$

The groups $ H _ {p} ^ {\Phi \mid B } ( B ; {\mathcal G} ) = H _ {p} ^ {\Phi \mid B } ( M ; {\mathcal G} ) $ coincide with $ H _ {p} ^ {c} ( B ; {\mathcal G} ) $ when $ \Phi = c $, and with $ H _ {p} ( B ; {\mathcal G} ) $ when $ \Phi $ is the family $ \Psi $ of all closed sets in $ M $ and the set $ B $ is closed (in this case the symbol $ \Phi $ in the first sequence can be omitted, and, moreover, there is an isomorphism $ H _ {p} ( M , B ; {\mathcal G} ) = H _ {p} ( A ; {\mathcal G} ) $). When $ \Phi = \Psi $ and $ B $ is open, the symbol $ \Phi $ can be omitted only in the second and third terms of the homology sequence, since the homology groups $ H _ {p} ^ {\Phi \mid B } ( B ; {\mathcal G} ) $ depend not only on the topological space $ B $ but also on the inclusion $ B \subset M $.

When $ \Phi = \Psi $, this symbol (together with $ \Phi \cap A $) can be omitted in the cohomology sequence of the pair $ ( M , A ) $. If $ A $ is closed, then

$$ H _ \Phi ^ {q} ( M , A ; {\mathcal H} _ {n} ( {\mathcal G} ) ) = \ H _ {\Phi \mid B } ^ {q} ( M ; {\mathcal H} _ {n} ( {\mathcal G} )) \ = H _ {\Phi \mid B } ^ {q} ( B ; {\mathcal H} _ {n} ( {\mathcal G} )) ; $$

when $ \Phi = \Psi $, the cohomology of $ B $ which occurs depends not only on $ B $ but also on the inclusion $ B \subset M $. If $ \Phi = c $ and $ A $ is closed, then $ \Phi \cap A $ can be replaced by $ c $ and in this case $ H _ {c} ^ {q} ( M ; A ; {\mathcal H} _ {n} ( {\mathcal G} ) ) = H _ {c} ^ {q} ( B ; {\mathcal H} _ {n} ( {\mathcal G} ) ) $ is a cohomology group "of the second kind" of the space $ B $. If $ \Phi = c $ but $ A $ is open, then the cohomology groups $ H _ {c \cap A } ^ {q} ( A ; {\mathcal H} _ {n} ( {\mathcal G} )) $ are not the same as $ H _ {c} ^ {q} ( A ; {\mathcal H} _ {n} ( {\mathcal G} )) $( and depend on the inclusion $ A \subset M $).

Poincaré–Lefschetz duality can easily be applied to describe a duality between the homology and the cohomology of a manifold with boundary. It is useful to bear in mind that, if all the non-zero stalks of the sheaf $ {\mathcal H} _ {n} ( R) $ are isomorphic to the basic ring $ R $, then $ {\mathcal H} _ {n} ( {\mathcal G} ) = {\mathcal H} _ {n} ( R) \otimes _ {R} {\mathcal G} $.

When the sheaf $ {\mathcal H} _ {n} ( R) $ is locally constant, there exists a locally constant sheaf $ {\mathcal L} ( R) $, unique up to an isomorphism, for which $ {\mathcal L} ( R) \otimes _ {R} {\mathcal H} _ {n} ( R) = R $. Therefore, if in the homology sequence (*) the coefficient sheaf $ {\mathcal L} ( R) \otimes _ {R} {\mathcal G} $ is used instead of $ {\mathcal G} $, then in the cohomology sequence the sheaf $ {\mathcal G} $ appears (instead of $ {\mathcal H} _ {n} ( {\mathcal G} ) $). Thus, the pre-assigned coefficients can appear in the duality isomorphism either in the homology or in the cohomology.

The most natural proof of Poincaré duality is obtained by means of sheaf theory. Poincaré duality in topology is a particular case of Poincaré-type duality relations which are true for derived functors in homological algebra (another particular case is Poincaré-type duality for homology and cohomology of groups).

References

[1] E.G. Sklyarenko, "Homology and cohomology of general spaces" Itogi Nauk. i Tekhn. Sovr. Probl. Mat. , 50 (1989) pp. Chapt. 8
[2] E.G. Sklyarenko, "Poincaré duality and relations between the functors Ext and Tor" Math. Notes , 28 : 5 (1980) pp. 841–845 Mat. Zametki , 28 : 5 (1980) pp. 769–776
[3] W.S. Massey, "Homology and cohomology theory" , M. Dekker (1978)

Comments

One of the simpler forms of Poincaré duality is as follows. Let $ M ^ {n} $ be a compact orientable manifold (cf. Orientation) and $ c _ {M} \in H _ {n} ( M; \mathbf Z ) $ a fundamental class. Then the cap product with $ c _ {M} $ induces an isomorphism $ H ^ {i} ( M ; G) \rightarrow H _ {n-} i ( M ; G) $, cf. [a1]. A formulation using the slant product with an orientation class is given in [a2]. Poincaré duality (for de Rham cohomology) can also be seen as coming from the natural pairing $ H ^ {q} ( M) \otimes H _ {c} ^ {n-} q ( M) \rightarrow \mathbf R $ given by taking the wedge product of two differential forms followed by integration (with respect to a chosen volume form), giving $ H ^ {q} ( M) \simeq H _ {c} ^ {n-} q ( M) ^ {*} $, cf. [a3]. For Poincaré duality in the case of generalized cohomology theories defined by a spectrum $ E $, see [a4].

References

[a1] A. Dold, "Lectures on algebraic topology" , Springer (1972) pp. Sect. VIII.8.1
[a2] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. Sect. 6.2
[a3] R. Bott, L.W. Tu, "Differential forms in algebraic topology" , Springer (1982) pp. Chapt. I, Sect. 5
[a4] R.M. Switzer, "Algebraic topology - homotopy and homology" , Springer (1975) pp. 316
How to Cite This Entry:
Poincaré duality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poincar%C3%A9_duality&oldid=23470
This article was adapted from an original article by E.G. Sklyarenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article