Namespaces
Variants
Actions

Difference between revisions of "Plancherel theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
For any square-summable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p0727701.png" /> the integral
+
<!--
 +
p0727701.png
 +
$#A+1 = 45 n = 0
 +
$#C+1 = 45 : ~/encyclopedia/old_files/data/P072/P.0702770 Plancherel theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p0727702.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
converges in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p0727703.png" /> to some function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p0727704.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p0727705.png" />, i.e.
+
For any square-summable function  $  f \in L _ {2} (- \infty , + \infty ) $
 +
the integral
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p0727706.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$
 +
\widehat{f}  _  \omega  ( x)  =
 +
\frac{1}{\sqrt {2 \pi } }
 +
\int\limits _ {- \omega } ^ { {+ }  \omega }
 +
f( y) e  ^ {-} ixy  dy
 +
$$
  
Here the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p0727707.png" /> itself is representable as the limit in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p0727708.png" /> of the integrals
+
converges in  $  L _ {2} $
 +
to some function $  \widehat{f}  \in L _ {2} $
 +
as $  \omega \rightarrow \infty $,
 +
i.e.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p0727709.png" /></td> </tr></table>
+
$$ \tag{1 }
 +
\lim\limits _ {\omega \rightarrow \infty }  \int\limits _ {- \infty } ^ { {+ }  \infty } | \widehat{f}  ( x) - \widehat{f}  _  \omega  ( x) |  ^ {2}  dx  = 0.
 +
$$
  
as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277010.png" />, i.e.
+
Here the function  $  f $
 +
itself is representable as the limit in  $  L _ {2} $
 +
of the integrals
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277011.png" /></td> </tr></table>
+
$$
 +
f _  \eta  ( x)  =
 +
\frac{1}{\sqrt {2 \pi } }
 +
\int\limits _ {- \eta } ^ { {+ }  \eta } \widehat{f}  ( y)
 +
e  ^ {ixy}  dy,\  \eta > 0,
 +
$$
 +
 
 +
as  $  \eta \rightarrow \infty $,
 +
i.e.
 +
 
 +
$$
 +
\lim\limits _ {\eta \rightarrow \infty }  \int\limits _ {- \infty } ^  \infty 
 +
| f( x) - f _  \eta  ( x) |  ^ {2}  dx  =  0.
 +
$$
  
 
Also, the following relation holds:
 
Also, the following relation holds:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277012.png" /></td> </tr></table>
+
$$
 +
\int\limits _ {- \infty } ^ { {+ }  \infty } | f( x) |  ^ {2}  dx  = \int\limits _ {- \infty } ^ { {+ }  \infty } |
 +
\widehat{f}  ( \lambda ) |  ^ {2}  d \lambda
 +
$$
  
 
(the Parseval–Plancherel formula).
 
(the Parseval–Plancherel formula).
Line 23: Line 60:
 
The function
 
The function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277013.png" /></td> </tr></table>
+
$$
 +
\widehat{f}  ( x)  = \lim\limits _ {\omega \rightarrow \infty } 
 +
\frac{1}{\sqrt {2 \pi } }
 +
\int\limits _ {-
 +
\omega } ^ { {+ }  \omega } f( y) e  ^ {-} iyx  dy,
 +
$$
  
where the limit is understood in the sense of convergence in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277014.png" /> (as in (1)), is called the [[Fourier transform|Fourier transform]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277015.png" />; it is sometimes denoted by the symbolic formula:
+
where the limit is understood in the sense of convergence in $  L _ {2} $(
 +
as in (1)), is called the [[Fourier transform|Fourier transform]] of $  f $;  
 +
it is sometimes denoted by the symbolic formula:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\widehat{f}  ( x)  =
 +
\frac{1}{\sqrt {2 \pi } }
 +
\int\limits _ {- \infty } ^ { {+ }  \infty } f( y) e  ^ {-} ixy  dy ,
 +
$$
  
where the integral in (2) must be understood in the sense of the principal value at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277017.png" /> in the metric of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277018.png" />. One similarly interprets the equation
+
where the integral in (2) must be understood in the sense of the principal value at $  \infty $
 +
in the metric of $  L _ {2} $.  
 +
One similarly interprets the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277019.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
f( x)  =
 +
\frac{1}{\sqrt {2 \pi } }
 +
\int\limits _ {- \infty } ^ { {+ }  \infty } \widetilde{f}  ( y) e  ^ {ixy}
 +
dy.
 +
$$
  
For functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277020.png" />, the integrals (2) and (3) exist in the sense of the principal value for almost all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277021.png" />.
+
For functions $  f \in L _ {2} $,  
 +
the integrals (2) and (3) exist in the sense of the principal value for almost all $  x $.
  
The functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277023.png" /> also satisfy the following equations for almost-all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277024.png" />:
+
The functions $  f $
 +
and $  \widehat{f}  $
 +
also satisfy the following equations for almost-all $  x $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277025.png" /></td> </tr></table>
+
$$
 +
\widehat{f}  ( x)  =
 +
\frac{d}{dx}
 +
\left \{
 +
\frac{1}{\sqrt {2 \pi } }
 +
\int\limits _ {- \infty } ^ { {+ }
 +
\infty } f( y)
 +
\frac{e  ^ {-} ixy - 1 }{-}
 +
iy  dy \right \} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277026.png" /></td> </tr></table>
+
$$
 +
f( x)  =
 +
\frac{d}{dx}
 +
\left \{
 +
\frac{1}{\sqrt {2 \pi
 +
} }
 +
\int\limits _ {- \infty } ^ { {+ }  \infty } \widehat{f}  ( y)
 +
\frac{e  ^ {ixy} - 1 }{iy}
 +
  dy \right \} .
 +
$$
  
If Fourier transformation is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277027.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277028.png" /> denotes the inverse, then Plancherel's theorem can be rephrased as follows: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277030.png" /> are mutually-inverse unitary operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277031.png" /> (cf. [[Unitary operator|Unitary operator]]).
+
If Fourier transformation is denoted by $  {\mathcal F} $
 +
and if $  {\mathcal F}  ^ {-} 1 $
 +
denotes the inverse, then Plancherel's theorem can be rephrased as follows: $  {\mathcal F} $
 +
and $  {\mathcal F}  ^ {-} 1 $
 +
are mutually-inverse unitary operators on $  L _ {2} $(
 +
cf. [[Unitary operator|Unitary operator]]).
  
 
The theorem was established by M. Plancherel (1910).
 
The theorem was established by M. Plancherel (1910).
Line 47: Line 128:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''2''' , Cambridge Univ. Press  (1988)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.C. Titchmarsh,  "Introduction to the theory of Fourier integrals" , Oxford Univ. Press  (1948)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. Bochner,  "Lectures on Fourier integrals" , Princeton Univ. Press  (1959)  (Translated from German)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''2''' , Cambridge Univ. Press  (1988)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E.C. Titchmarsh,  "Introduction to the theory of Fourier integrals" , Oxford Univ. Press  (1948)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  S. Bochner,  "Lectures on Fourier integrals" , Princeton Univ. Press  (1959)  (Translated from German)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The heart of Plancherel's theorem is the assertion that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277032.png" />, then: a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277033.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277034.png" /> is defined by (2) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277035.png" />; b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277036.png" />; and c) the set of all such <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277037.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277038.png" />. Then one extends this mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277039.png" /> to a unitary mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277040.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277041.png" /> onto itself which satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277042.png" /> for almost every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277043.png" />. There are generalizations of Plancherel's theorem in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277044.png" /> is replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072770/p07277045.png" /> or by any locally compact Abelian group. Cf. also [[Harmonic analysis, abstract|Harmonic analysis, abstract]].
+
The heart of Plancherel's theorem is the assertion that if $  f \in L _ {1} ( \mathbf R ) \cap L _ {2} ( \mathbf R ) $,  
 +
then: a) $  \widehat{f}  \in L _ {2} ( \mathbf R ) $,  
 +
where $  \widehat{f}  ( y) $
 +
is defined by (2) for $  y \in \mathbf R $;  
 +
b) $  \| \widehat{f}  \| _ {2} = \| f \| _ {2} $;  
 +
and c) the set of all such $  \widehat{f}  $
 +
is dense in $  L _ {2} ( \mathbf R ) $.  
 +
Then one extends this mapping $  f \rightarrow \widehat{f}  $
 +
to a unitary mapping $  {\mathcal F} $
 +
of $  L _ {2} ( \mathbf R ) $
 +
onto itself which satisfies $  ( {\mathcal F}  ^ {-} 1 f  ) ( y) = ( {\mathcal F} f  )(- y) $
 +
for almost every $  y \in \mathbf R $.  
 +
There are generalizations of Plancherel's theorem in which $  \mathbf R $
 +
is replaced by $  \mathbf R  ^ {n} $
 +
or by any locally compact Abelian group. Cf. also [[Harmonic analysis, abstract|Harmonic analysis, abstract]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin,  "Fourier analysis on groups" , Wiley  (1962)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Weil,  "l'Intégration dans les groupes topologiques et ses applications" , Hermann  (1940)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  L.S. Pontryagin,  "Topological groups" , Princeton Univ. Press  (1958)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  E. Hewitt,  K.A. Ross,  "Abstract harmonic analysis" , '''1–2''' , Springer  (1979)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  H. Reiter,  "Classical harmonic analysis and locally compact groups" , Oxford Univ. Press  (1968)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Rudin,  "Fourier analysis on groups" , Wiley  (1962)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Weil,  "l'Intégration dans les groupes topologiques et ses applications" , Hermann  (1940)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  L.S. Pontryagin,  "Topological groups" , Princeton Univ. Press  (1958)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  E. Hewitt,  K.A. Ross,  "Abstract harmonic analysis" , '''1–2''' , Springer  (1979)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  H. Reiter,  "Classical harmonic analysis and locally compact groups" , Oxford Univ. Press  (1968)</TD></TR></table>

Revision as of 08:06, 6 June 2020


For any square-summable function $ f \in L _ {2} (- \infty , + \infty ) $ the integral

$$ \widehat{f} _ \omega ( x) = \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \omega } ^ { {+ } \omega } f( y) e ^ {-} ixy dy $$

converges in $ L _ {2} $ to some function $ \widehat{f} \in L _ {2} $ as $ \omega \rightarrow \infty $, i.e.

$$ \tag{1 } \lim\limits _ {\omega \rightarrow \infty } \int\limits _ {- \infty } ^ { {+ } \infty } | \widehat{f} ( x) - \widehat{f} _ \omega ( x) | ^ {2} dx = 0. $$

Here the function $ f $ itself is representable as the limit in $ L _ {2} $ of the integrals

$$ f _ \eta ( x) = \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \eta } ^ { {+ } \eta } \widehat{f} ( y) e ^ {ixy} dy,\ \eta > 0, $$

as $ \eta \rightarrow \infty $, i.e.

$$ \lim\limits _ {\eta \rightarrow \infty } \int\limits _ {- \infty } ^ \infty | f( x) - f _ \eta ( x) | ^ {2} dx = 0. $$

Also, the following relation holds:

$$ \int\limits _ {- \infty } ^ { {+ } \infty } | f( x) | ^ {2} dx = \int\limits _ {- \infty } ^ { {+ } \infty } | \widehat{f} ( \lambda ) | ^ {2} d \lambda $$

(the Parseval–Plancherel formula).

The function

$$ \widehat{f} ( x) = \lim\limits _ {\omega \rightarrow \infty } \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \omega } ^ { {+ } \omega } f( y) e ^ {-} iyx dy, $$

where the limit is understood in the sense of convergence in $ L _ {2} $( as in (1)), is called the Fourier transform of $ f $; it is sometimes denoted by the symbolic formula:

$$ \tag{2 } \widehat{f} ( x) = \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ { {+ } \infty } f( y) e ^ {-} ixy dy , $$

where the integral in (2) must be understood in the sense of the principal value at $ \infty $ in the metric of $ L _ {2} $. One similarly interprets the equation

$$ \tag{3 } f( x) = \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ { {+ } \infty } \widetilde{f} ( y) e ^ {ixy} dy. $$

For functions $ f \in L _ {2} $, the integrals (2) and (3) exist in the sense of the principal value for almost all $ x $.

The functions $ f $ and $ \widehat{f} $ also satisfy the following equations for almost-all $ x $:

$$ \widehat{f} ( x) = \frac{d}{dx} \left \{ \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ { {+ } \infty } f( y) \frac{e ^ {-} ixy - 1 }{-} iy dy \right \} , $$

$$ f( x) = \frac{d}{dx} \left \{ \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ { {+ } \infty } \widehat{f} ( y) \frac{e ^ {ixy} - 1 }{iy} dy \right \} . $$

If Fourier transformation is denoted by $ {\mathcal F} $ and if $ {\mathcal F} ^ {-} 1 $ denotes the inverse, then Plancherel's theorem can be rephrased as follows: $ {\mathcal F} $ and $ {\mathcal F} ^ {-} 1 $ are mutually-inverse unitary operators on $ L _ {2} $( cf. Unitary operator).

The theorem was established by M. Plancherel (1910).

References

[1] A. Zygmund, "Trigonometric series" , 2 , Cambridge Univ. Press (1988)
[2] E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948)
[3] S. Bochner, "Lectures on Fourier integrals" , Princeton Univ. Press (1959) (Translated from German)

Comments

The heart of Plancherel's theorem is the assertion that if $ f \in L _ {1} ( \mathbf R ) \cap L _ {2} ( \mathbf R ) $, then: a) $ \widehat{f} \in L _ {2} ( \mathbf R ) $, where $ \widehat{f} ( y) $ is defined by (2) for $ y \in \mathbf R $; b) $ \| \widehat{f} \| _ {2} = \| f \| _ {2} $; and c) the set of all such $ \widehat{f} $ is dense in $ L _ {2} ( \mathbf R ) $. Then one extends this mapping $ f \rightarrow \widehat{f} $ to a unitary mapping $ {\mathcal F} $ of $ L _ {2} ( \mathbf R ) $ onto itself which satisfies $ ( {\mathcal F} ^ {-} 1 f ) ( y) = ( {\mathcal F} f )(- y) $ for almost every $ y \in \mathbf R $. There are generalizations of Plancherel's theorem in which $ \mathbf R $ is replaced by $ \mathbf R ^ {n} $ or by any locally compact Abelian group. Cf. also Harmonic analysis, abstract.

References

[a1] W. Rudin, "Fourier analysis on groups" , Wiley (1962)
[a2] A. Weil, "l'Intégration dans les groupes topologiques et ses applications" , Hermann (1940)
[a3] L.S. Pontryagin, "Topological groups" , Princeton Univ. Press (1958) (Translated from Russian)
[a4] E. Hewitt, K.A. Ross, "Abstract harmonic analysis" , 1–2 , Springer (1979)
[a5] H. Reiter, "Classical harmonic analysis and locally compact groups" , Oxford Univ. Press (1968)
How to Cite This Entry:
Plancherel theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Plancherel_theorem&oldid=48185
This article was adapted from an original article by P.I. Lizorkin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article