Namespaces
Variants
Actions

Difference between revisions of "Permutator"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An eigen value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p0723201.png" /> of a stochastic kernel that it is different from one and such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p0723202.png" />. A non-negative continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p0723203.png" /> given on a compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p0723204.png" /> in a finite-dimensional space is called a stochastic kernel if
+
<!--
 +
p0723201.png
 +
$#A+1 = 19 n = 0
 +
$#C+1 = 19 : ~/encyclopedia/old_files/data/P072/P.0702320 Permutator
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p0723205.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The eigen values of such a kernel satisfy the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p0723206.png" />. In operator theory, the name permutator is also given to an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p0723207.png" /> if the range of its values, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p0723208.png" />, is finite dimensional and if there exists a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p0723209.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p07232010.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p07232011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p07232012.png" />.
+
An eigen value  $  \lambda $
 +
of a stochastic kernel that it is different from one and such that  $  | \lambda | = 1 $.
 +
A non-negative continuous function  $  K( x, y) $
 +
given on a compact set  $  \Omega $
 +
in a finite-dimensional space is called a stochastic kernel if
 +
 
 +
$$
 +
\int\limits _  \Omega  K( x, y)  dy  =  1,\ \
 +
x \in \Omega .
 +
$$
 +
 
 +
The eigen values of such a kernel satisfy the condition $  | \lambda | \leq  1 $.  
 +
In operator theory, the name permutator is also given to an operator $  A: E \rightarrow E $
 +
if the range of its values, $  A( E) $,  
 +
is finite dimensional and if there exists a basis $  e _ {1} \dots e _ {n} $
 +
in $  A ( E) $
 +
such that $  Ae _ {j} = e _ {k _ {j}  } $,  
 +
$  j = 1 \dots n $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.P. Zabreiko (ed.)  A.I. Koshelev (ed.)  M.A. Krasnoselskii (ed.)  S.G. Mikhlin (ed.)  L.S. Rakovshchik (ed.)  V.Ya. Stet'senko (ed.)  T.O. Shaposhnikova (ed.)  R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff  (1975)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.P. Zabreiko (ed.)  A.I. Koshelev (ed.)  M.A. Krasnoselskii (ed.)  S.G. Mikhlin (ed.)  L.S. Rakovshchik (ed.)  V.Ya. Stet'senko (ed.)  T.O. Shaposhnikova (ed.)  R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff  (1975)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Given a kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p07232013.png" />, one considers the homogeneous integral equation
+
Given a kernel $  K( x, t) $,
 +
one considers the homogeneous integral equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p07232014.png" /></td> </tr></table>
+
$$
 +
u( x) - \lambda \int\limits _  \Omega  K( x, t) u( t)  dt = 0.
 +
$$
  
A regular point of a kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p07232015.png" /> is one for which this equation has only the trivial solution; a characteristic point (value) is one for which there is a non-trivial solution. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p07232016.png" /> is characteristic, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p07232017.png" /> is called an eigen value of the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p07232018.png" />. Note that it is then an eigen value of the integral operator defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072320/p07232019.png" />; cf. [[#References|[1]]], pp. 27ff.
+
A regular point of a kernel $  K( x, t) $
 +
is one for which this equation has only the trivial solution; a characteristic point (value) is one for which there is a non-trivial solution. If $  \lambda $
 +
is characteristic, $  \lambda  ^ {-} 1 $
 +
is called an eigen value of the kernel $  K( x, t) $.  
 +
Note that it is then an eigen value of the integral operator defined by $  K( x, t) $;  
 +
cf. [[#References|[1]]], pp. 27ff.

Latest revision as of 08:05, 6 June 2020


An eigen value $ \lambda $ of a stochastic kernel that it is different from one and such that $ | \lambda | = 1 $. A non-negative continuous function $ K( x, y) $ given on a compact set $ \Omega $ in a finite-dimensional space is called a stochastic kernel if

$$ \int\limits _ \Omega K( x, y) dy = 1,\ \ x \in \Omega . $$

The eigen values of such a kernel satisfy the condition $ | \lambda | \leq 1 $. In operator theory, the name permutator is also given to an operator $ A: E \rightarrow E $ if the range of its values, $ A( E) $, is finite dimensional and if there exists a basis $ e _ {1} \dots e _ {n} $ in $ A ( E) $ such that $ Ae _ {j} = e _ {k _ {j} } $, $ j = 1 \dots n $.

References

[1] P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1975) (Translated from Russian)

Comments

Given a kernel $ K( x, t) $, one considers the homogeneous integral equation

$$ u( x) - \lambda \int\limits _ \Omega K( x, t) u( t) dt = 0. $$

A regular point of a kernel $ K( x, t) $ is one for which this equation has only the trivial solution; a characteristic point (value) is one for which there is a non-trivial solution. If $ \lambda $ is characteristic, $ \lambda ^ {-} 1 $ is called an eigen value of the kernel $ K( x, t) $. Note that it is then an eigen value of the integral operator defined by $ K( x, t) $; cf. [1], pp. 27ff.

How to Cite This Entry:
Permutator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Permutator&oldid=48163
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article