Namespaces
Variants
Actions

Difference between revisions of "Perfect compactification"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Compactification|compactification]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720301.png" /> of a [[Completely-regular space|completely-regular space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720302.png" /> such that the closure in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720303.png" /> of the boundary of any open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720304.png" /> coincides with the boundary of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720305.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720306.png" /> is the maximal open set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720307.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720308.png" />. Equivalent definitions are as follows:
+
<!--
 +
p0720301.png
 +
$#A+1 = 45 n = 0
 +
$#C+1 = 45 : ~/encyclopedia/old_files/data/P072/P.0702030 Perfect compactification
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p0720309.png" /> for any pair of disjoint open sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203010.png" />;
+
{{TEX|auto}}
 +
{{TEX|done}}
  
b) if a closed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203011.png" /> partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203012.png" /> into open sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203014.png" />, then the closure of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203015.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203016.png" /> partitions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203017.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203019.png" />;
+
A [[Compactification|compactification]]  $  Y $
 +
of a [[Completely-regular space|completely-regular space]]  $  X $
 +
such that the closure in  $  Y $
 +
of the boundary of any open set $  U \subset  X $
 +
coincides with the boundary of  $  O( U) $,  
 +
where  $  O( U) $
 +
is the maximal open set in $  Y $
 +
for which  $  O( U) \cap X = U $.  
 +
Equivalent definitions are as follows:
  
c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203020.png" /> does not partition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203021.png" /> locally at any of its points.
+
a)  $  O( U \cup V )= O( U) \cup O( V) $
 +
for any pair of disjoint open sets  $  U, V $;
  
A compactification <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203022.png" /> is perfect if and only if the natural mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203023.png" /> is monotone; here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203024.png" /> is the [[Stone–Čech compactification|Stone–Čech compactification]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203025.png" />. Also, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203026.png" /> is the unique perfect compactification of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203027.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203028.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203029.png" /> a compactum and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203030.png" />. The local connectedness of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203031.png" /> implies the local connectedness of any perfect extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203032.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203033.png" /> satisfying the [[First axiom of countability|first axiom of countability]] (and also the local connectedness of all intermediate extensions). Among all the perfect compactifications of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203034.png" /> there is a minimal one, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203035.png" />, if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203036.png" /> has at least one compactification with punctiform remainder (cf. [[Remainder of a space|Remainder of a space]]). The remainder in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203037.png" /> is punctiform and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203038.png" /> is the maximal such extension among those with punctiform remainder. Every homeomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203039.png" /> extends to a homeomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203040.png" />, and every [[Perfect mapping|perfect mapping]] from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203041.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203042.png" /> extends to a mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203043.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203044.png" /> (provided <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072030/p07203045.png" /> exists).
+
b) if a closed set  $  F $
 +
partitions  $  X $
 +
into open sets  $  U $
 +
and $  V $,  
 +
then the closure of $  F $
 +
in  $  Y $
 +
partitions  $  Y $
 +
into  $  O( U) $
 +
and $  O( V) $;
  
 +
c)  $  Y \setminus  X $
 +
does not partition  $  Y $
 +
locally at any of its points.
  
 +
A compactification  $  \gamma X $
 +
is perfect if and only if the natural mapping  $  \beta  \mathop{\rm id} _ {X} :  \beta X \rightarrow \gamma X $
 +
is monotone; here  $  \beta $
 +
is the [[Stone–Čech compactification|Stone–Čech compactification]] of  $  X $.
 +
Also,  $  \beta X $
 +
is the unique perfect compactification of  $  X $
 +
if and only if  $  X= A \cup M $
 +
with  $  A $
 +
a compactum and  $  \mathop{\rm dim}  M = 0 $.
 +
The local connectedness of  $  X $
 +
implies the local connectedness of any perfect extension  $  Y $
 +
of  $  X $
 +
satisfying the [[First axiom of countability|first axiom of countability]] (and also the local connectedness of all intermediate extensions). Among all the perfect compactifications of  $  X $
 +
there is a minimal one,  $  \mu X $,
 +
if and only if  $  X $
 +
has at least one compactification with punctiform remainder (cf. [[Remainder of a space|Remainder of a space]]). The remainder in  $  \mu X $
 +
is punctiform and  $  \mu X $
 +
is the maximal such extension among those with punctiform remainder. Every homeomorphism of  $  X $
 +
extends to a homeomorphism of  $  \mu X $,
 +
and every [[Perfect mapping|perfect mapping]] from  $  X $
 +
onto  $  X  ^  \prime  $
 +
extends to a mapping from  $  \mu X $
 +
onto  $  \mu X  ^  \prime  $(
 +
provided  $  \mu X  ^  \prime  $
 +
exists).
  
 
====Comments====
 
====Comments====

Latest revision as of 08:05, 6 June 2020


A compactification $ Y $ of a completely-regular space $ X $ such that the closure in $ Y $ of the boundary of any open set $ U \subset X $ coincides with the boundary of $ O( U) $, where $ O( U) $ is the maximal open set in $ Y $ for which $ O( U) \cap X = U $. Equivalent definitions are as follows:

a) $ O( U \cup V )= O( U) \cup O( V) $ for any pair of disjoint open sets $ U, V $;

b) if a closed set $ F $ partitions $ X $ into open sets $ U $ and $ V $, then the closure of $ F $ in $ Y $ partitions $ Y $ into $ O( U) $ and $ O( V) $;

c) $ Y \setminus X $ does not partition $ Y $ locally at any of its points.

A compactification $ \gamma X $ is perfect if and only if the natural mapping $ \beta \mathop{\rm id} _ {X} : \beta X \rightarrow \gamma X $ is monotone; here $ \beta $ is the Stone–Čech compactification of $ X $. Also, $ \beta X $ is the unique perfect compactification of $ X $ if and only if $ X= A \cup M $ with $ A $ a compactum and $ \mathop{\rm dim} M = 0 $. The local connectedness of $ X $ implies the local connectedness of any perfect extension $ Y $ of $ X $ satisfying the first axiom of countability (and also the local connectedness of all intermediate extensions). Among all the perfect compactifications of $ X $ there is a minimal one, $ \mu X $, if and only if $ X $ has at least one compactification with punctiform remainder (cf. Remainder of a space). The remainder in $ \mu X $ is punctiform and $ \mu X $ is the maximal such extension among those with punctiform remainder. Every homeomorphism of $ X $ extends to a homeomorphism of $ \mu X $, and every perfect mapping from $ X $ onto $ X ^ \prime $ extends to a mapping from $ \mu X $ onto $ \mu X ^ \prime $( provided $ \mu X ^ \prime $ exists).

Comments

A space is called punctiform if and only if no compact connected subset contains more than one point.

References

[a1] A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) pp. 232ff (Translated from Russian)
How to Cite This Entry:
Perfect compactification. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Perfect_compactification&oldid=19245
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article