Namespaces
Variants
Actions

Difference between revisions of "Pedal curve"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''of a curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p0719501.png" /> with respect to a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p0719502.png" />''
+
<!--
 +
p0719501.png
 +
$#A+1 = 19 n = 0
 +
$#C+1 = 19 : ~/encyclopedia/old_files/data/P071/P.0701950 Pedal curve
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The set of bases to the perpendiculars dropped from the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p0719503.png" /> to the tangents to the curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p0719504.png" />. For example, the [[Pascal limaçon|Pascal limaçon]] is the pedal of a circle with respect to the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p0719505.png" /> (see Fig.). The pedal (curve) of a plane curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p0719506.png" /> relative to the coordinate origin is
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p0719507.png" /></td> </tr></table>
+
''of a curve  $  l $
 +
with respect to a point  $  O $''
 +
 
 +
The set of bases to the perpendiculars dropped from the point  $  O $
 +
to the tangents to the curve  $  l $.
 +
For example, the [[Pascal limaçon|Pascal limaçon]] is the pedal of a circle with respect to the point  $  O $(
 +
see Fig.). The pedal (curve) of a plane curve  $  x = x( t) , y = y( t) $
 +
relative to the coordinate origin is
 +
 
 +
$$
 +
= x - x  ^  \prime 
 +
\frac{xx  ^  \prime  + yy  ^  \prime  }{x  ^  \prime  2 + y  ^  \prime  2 }
 +
,\ \
 +
= y - y  ^  \prime 
 +
\frac{xx  ^  \prime  + yy  ^  \prime  }{x  ^  \prime  2 + y  ^  \prime  2 }
 +
.
 +
$$
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p071950a.gif" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p071950a.gif" />
Line 9: Line 33:
 
Figure: p071950a
 
Figure: p071950a
  
The equation for the pedal of a curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p0719508.png" /> in space relative to the origin is
+
The equation for the pedal of a curve $  x= x( t), y= y( t), z= z( t) $
 +
in space relative to the origin is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p0719509.png" /></td> </tr></table>
+
$$
 +
= x - x  ^  \prime 
 +
\frac{xx  ^  \prime  + yy  ^  \prime  + zz  ^  \prime  }{x  ^  \prime  2 + y  ^  \prime  2 + z  ^  \prime  2 }
 +
,\ \
 +
= y - y  ^  \prime 
 +
\frac{xx  ^  \prime  + yy  ^  \prime  + zz  ^  \prime  }{x  ^  \prime  2 + y  ^  \prime  2 + z  ^  \prime  2 }
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p07195010.png" /></td> </tr></table>
+
$$
 +
= z - z  ^  \prime 
 +
\frac{xx  ^  \prime  + yy  ^  \prime  + zz
 +
^  \prime  }{x  ^  \prime  2 + y  ^  \prime  2 + z  ^  \prime  2 }
 +
.
 +
$$
  
The antipedal of a curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p07195011.png" /> with respect to a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p07195012.png" /> is the name given to the curve with as pedal, with respect to the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p07195013.png" />, the curve <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p07195014.png" />.
+
The antipedal of a curve $  l $
 +
with respect to a point $  O $
 +
is the name given to the curve with as pedal, with respect to the point $  O $,  
 +
the curve $  l $.
  
The pedal of a surface with respect to a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p07195015.png" /> is the set of bases to the perpendiculars dropped from the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p07195016.png" /> to the tangent planes to the surface. The equation for the pedal of a surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p07195017.png" /> with respect to the coordinate origin is
+
The pedal of a surface with respect to a point $  O $
 +
is the set of bases to the perpendiculars dropped from the point $  O $
 +
to the tangent planes to the surface. The equation for the pedal of a surface $  F( x, y, z) = 0 $
 +
with respect to the coordinate origin is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p07195018.png" /></td> </tr></table>
+
$$
 +
= F _ {x} \Phi ,\ \
 +
= F _ {y} \Phi ,\ \
 +
= F _ {z} \Phi ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071950/p07195019.png" /></td> </tr></table>
+
$$
 
+
\Phi  =
 
+
\frac{xF _ {x} + yF _ {y} + zF _ {z} }{F _ {x} ^ { 2 } + F _ {y} ^ { 2 } + F _ {z} ^ { 2 } }
 +
.
 +
$$
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''I''' , Springer  (1987)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G. Darboux,  "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''1–4''' , Gauthier-Villars  (1887–1896)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''I''' , Springer  (1987)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G. Darboux,  "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''1–4''' , Gauthier-Villars  (1887–1896)</TD></TR></table>

Latest revision as of 08:05, 6 June 2020


of a curve $ l $ with respect to a point $ O $

The set of bases to the perpendiculars dropped from the point $ O $ to the tangents to the curve $ l $. For example, the Pascal limaçon is the pedal of a circle with respect to the point $ O $( see Fig.). The pedal (curve) of a plane curve $ x = x( t) , y = y( t) $ relative to the coordinate origin is

$$ X = x - x ^ \prime \frac{xx ^ \prime + yy ^ \prime }{x ^ \prime 2 + y ^ \prime 2 } ,\ \ Y = y - y ^ \prime \frac{xx ^ \prime + yy ^ \prime }{x ^ \prime 2 + y ^ \prime 2 } . $$

Figure: p071950a

The equation for the pedal of a curve $ x= x( t), y= y( t), z= z( t) $ in space relative to the origin is

$$ X = x - x ^ \prime \frac{xx ^ \prime + yy ^ \prime + zz ^ \prime }{x ^ \prime 2 + y ^ \prime 2 + z ^ \prime 2 } ,\ \ Y = y - y ^ \prime \frac{xx ^ \prime + yy ^ \prime + zz ^ \prime }{x ^ \prime 2 + y ^ \prime 2 + z ^ \prime 2 } , $$

$$ Z = z - z ^ \prime \frac{xx ^ \prime + yy ^ \prime + zz ^ \prime }{x ^ \prime 2 + y ^ \prime 2 + z ^ \prime 2 } . $$

The antipedal of a curve $ l $ with respect to a point $ O $ is the name given to the curve with as pedal, with respect to the point $ O $, the curve $ l $.

The pedal of a surface with respect to a point $ O $ is the set of bases to the perpendiculars dropped from the point $ O $ to the tangent planes to the surface. The equation for the pedal of a surface $ F( x, y, z) = 0 $ with respect to the coordinate origin is

$$ X = F _ {x} \Phi ,\ \ Y = F _ {y} \Phi ,\ \ Z = F _ {z} \Phi , $$

where

$$ \Phi = \frac{xF _ {x} + yF _ {y} + zF _ {z} }{F _ {x} ^ { 2 } + F _ {y} ^ { 2 } + F _ {z} ^ { 2 } } . $$

Comments

References

[a1] M. Berger, "Geometry" , I , Springer (1987)
[a2] G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 1–4 , Gauthier-Villars (1887–1896)
How to Cite This Entry:
Pedal curve. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pedal_curve&oldid=17030
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article