Namespaces
Variants
Actions

Peano theorem

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 34A12 [MSN][ZBL]

One of the existence theorems for solutions of an ordinary differential equation (cf. Differential equation, ordinary), established by G. Peano on [Pe]. More precisely

Theorem Let $U\subset \mathbb R^n$ be an open set and $f: U\times [0,T] \to \mathbb R^n$ a continuous function. Then, for every $x_0\in U$ there is a positive $\delta$ and a solution $x: [0,\delta]\to U$ of the ordinary differential equation $\dot{x} (t) = f (x(t), t)$ satisfying the initial condition $x(0)=x_0$.

Strictly speaking, the theorem above is the $n$-dimensional generalization of the original Peano's result, which he established in the case $n=1$. The solution $x$ of the theorem is called the integral curve through $x_0$. Peano's theorem guarantees the existence of at least one solution, but the continuity hypothesis is far from guaranteeing its uniqueness. For the latter one usually assumes a Lipschitz condition on $f$, namely $|f(x_1, t)- f (x_2, t)|\leq M |x_1-x_2|$, as in the classical Cauchy-Lipschitz theorem (see also Osgood criterion for a refinement of this statement).


References

[Am] H. Amann, "Ordinary differential equations. An introduction to nonlinear analysis." de Gruyter Studies in Mathematics, 13. Walter de Gruyter & Co., Berlin, 1990.
[Ha] P. Hartman, "Ordinary differential equations" , Birkhäuser (1982)
[Pe] G. Peano, "Démonstration de l'intégrabilité des équations différentielles ordinaires" Math. Ann. , 37 (1890) pp. 182–228
[Pet] I.G. Petrovskii, "Ordinary differential equations" , Prentice-Hall (1966) (Translated from Russian)
How to Cite This Entry:
Peano theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Peano_theorem&oldid=30802
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article