Namespaces
Variants
Actions

Partial differential equations on a manifold

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


The basic idea is that a partial differential equation is given by a set of functions in a jet bundle, which is natural because after all a (partial) differential equation is a relation between a function, its dependent variables and its derivatives up to a certain order. In the sequel, all manifolds and mappings are either all $ C ^ \infty $ or all real-analytic.

A fibred manifold is a triple $ ( M, N, \pi ) $ consisting of two manifolds $ M $, $ N $ and a differentiable mapping $ \pi : M \rightarrow N $ such that $ d \pi ( m) : T _ {m} M \rightarrow T _ {\pi ( m) } N $ is surjective for all $ m \in M $. An example is a vector bundle $ ( E, N, \pi ) $ over $ N $. This means that locally around each $ m \in M $ the situation looks like the canonical projection $ \mathbf R ^ {n} \times \mathbf R ^ {m} \rightarrow \mathbf R ^ {n} $( $ \mathop{\rm dim} M= m+ n $, $ \mathop{\rm dim} N= n $). A cross section over an open set $ U \subset N $ is a differentiable mapping $ s: U \rightarrow \pi ^ {-1} ( U) \subset M $ such that $ \pi \circ s = \mathop{\rm id} $. An $ r $-jet of cross sections at $ x \in N $ is an equivalence class of cross sections defined by the following equivalence relation. Two cross sections $ s _ {i} : U _ {i} \rightarrow M $, $ i= 1, 2 $, are $ r $-jet equivalent at $ x _ {0} \in U _ {1} \cap U _ {2} $ if $ s _ {1} ( x _ {0} ) = s _ {2} ( x _ {0} ) $ and if for some (hence for all) coordinate systems around $ s _ {i} ( x _ {0} ) $ and $ x _ {0} $ one has

$$ \left . \frac{\partial ^ \alpha s _ {1} }{\partial x ^ \alpha } \ \right | _ {x= x _ {0} } = \left . \frac{\partial ^ \alpha s _ {2} }{\partial x ^ \alpha } \ \right | _ {x= x _ {0} } ,\ 0 \leq | \alpha | \leq r , $$

where $ \alpha = ( a _ {1} \dots a _ {n} ) $, $ a _ {i} \in \{ 0, 1,\dots \} $, $ | \alpha | = a _ {1} + \dots + a _ {n} $. Let $ J ^ {r} ( \pi ) $ be the set of all $ r $-jets. In local coordinates $ \pi $ looks like $ \mathbf R ^ {n} \times \mathbf R ^ {m} \rightarrow \mathbf R ^ {n} $, $ ( x ^ {1} \dots x ^ {n} , u ^ {1} \dots u ^ {m} ) \rightarrow ( x ^ {1} \dots x ^ {n} ) $. It readily follows that $ J ^ {r} ( \pi ) $ is a manifold with local coordinates $ ( x ^ {i} , u ^ {j} , p ^ {\alpha ,k } : i= 1 \dots n; j, k= 1 \dots m; 1 \leq | \alpha | \leq r) $, [a2], [a5]. The differentiable bundle $ J ^ {r} ( \pi ) $ is called the $ r $-th jet bundle of the fibred manifold $ \pi : M \rightarrow N $. For the case of a vector bundle $ E \rightarrow N $ see also Linear differential operator; for the case $ \pi : N \times N ^ \prime \rightarrow N $ one finds $ J ^ {r} ( N, N ^ \prime ) $, the jet bundle of mappings $ N \rightarrow N ^ \prime $. There are natural fibre bundle mappings $ \pi _ {r,k } : J ^ {r} ( \pi ) \rightarrow J ^ {k} ( \pi ) $ for $ r \geq k \geq 0 $, defined in local coordinates by forgetting about the $ p ^ \alpha $ with $ | \alpha | > k $. It is convenient to set $ p ^ {0,k } = u ^ {k} $ and $ J ^ {-1} ( \pi ) = N $, and then $ \pi _ {r,- 1 } : J ^ {r} ( \pi ) \rightarrow N $ is defined in the same way (forget about all $ p ^ \alpha $ and the $ u ^ {j} $).

Let $ {\mathcal O} ( J ^ {r} ( \pi )) $ be the sheaf of (germs of) differentiable functions on $ J ^ {r} ( \pi ) $. It is a sheaf of rings. A subsheaf of ideals $ \mathfrak a $ of $ {\mathcal O}( J ^ {r} ( \pi ) ) $ is a system of partial differential equations of order $ r $ on $ N $. A solution of the system $ \mathfrak a $ is a section $ s : N \rightarrow M $ such that $ f \circ J ^ {r} ( s)= 0 $ for all $ f \in \mathfrak a $. The set of integral points of $ \mathfrak a $ (i.e. the zeros of $ \mathfrak a $ on $ J ^ {r} ( \pi ) $) is denoted by $ J ( \mathfrak a ) $. The prolongation $ p ( \mathfrak a ) $ of $ \mathfrak a $ is defined as the system of order $ r+ 1 $ on $ N $ generated by the $ f \in \mathfrak a $( strictly speaking, the $ f \circ \pi _ {r,r- 1 } $) and the $ \partial ^ {k} f $, $ f \in \mathfrak a $, where $ \partial ^ {k} f $ on an $ r+ 1 $ jet $ j _ {x} ^ {r+1} ( s) $ at $ x \in N $ is defined by

$$ ( \partial ^ {k} f )( j _ {x} ^ {r+1} ( s)) = \frac \partial {\partial x ^ {k} } f( j _ {x} ^ {r} ( s)). $$

In local coordinates $ ( x ^ {i} , u ^ {j} , p ^ {\alpha ,k } ) $ the formal derivative $ \partial ^ {k} f $ is given by

$$ \partial ^ {k} f ( x , u , p) = \frac{\partial f }{\partial x ^ {k} } + \sum p ^ {\alpha ( i),j } \frac{\partial f }{\partial p ^ {\alpha ,j } } , $$

where the sum on the right is over $ j= 1 \dots m $ and all $ \alpha = ( a _ {1} \dots a _ {n} ) $ with $ | \alpha | \leq r $, and $ \alpha ( i) = ( a _ {1} \dots a _ {i-1} , a _ {i} + 1 , a _ {i+1} \dots a _ {n} ) $, $ a _ {i} \in \{ 0, 1, \dots \} $ (and $ p ^ {0,j } = u ^ {j} $).

The system $ \mathfrak a $ is said to be involutive at an integral point $ z \in J ^ {r} ( \pi ) $, [a1], if the following two conditions are satisfied: i) $ \mathfrak a $ is a regular local equation for the zeros of $ \mathfrak a $ at $ z $ (i.e. there are local sections $ s _ {1} \dots s _ {t} \in \Gamma ( U , \mathfrak a ) $ of $ \mathfrak a $ on an open neighbourhood $ U $ of $ z $ such that the integral points of $ \mathfrak a $ in $ U $ are precisely the points $ z ^ \prime $ for which $ s _ {j} ( z ^ \prime )= 0 $ and $ ds _ {1} \dots ds _ {t} $ are linearly independent at $ z $); and ii) there is a neighbourhood $ U $ of $ z $ such that $ \pi _ {r+ 1,r } ^ {-1} ( U) \cap J( p( \mathfrak a )) $ is a fibred manifold over $ U \cap J ( \mathfrak a ) $( with projection $ \pi _ {r+ 1,r } $). For a system $ \mathfrak a $ generated by linearly independent Pfaffian forms $ \theta ^ {1} \dots \theta ^ {k} $( i.e. a Pfaffian system, cf. Pfaffian problem) this is equivalent to the involutiveness defined in Involutive distribution, [a2], [a3]. As in that case of involutiveness one has to deal with solutions.

Let $ \mathfrak a $ be a system defined on $ J ^ {r} ( \pi ) $, and suppose that $ \mathfrak a $ is involutive at $ z \in J ( \mathfrak a ) $. Then there is a neighbourhood $ U $ of $ z $ satisfying the following. If $ \widetilde{z} \in J ( p ^ {t} ( \mathfrak a )) $ and $ \pi _ {r+ t,r } ( \widetilde{z} ) $ is in $ U $, then there is a solution $ f $ of $ \mathfrak a $ defined on a neighbourhood of $ x= \pi _ {r+ t,- 1 } ( \widetilde{z} ) $ such that $ J ^ {r+ t } ( f ) = \widetilde{z} $ at $ x $.

The Cartan–Kuranishi prolongation theorem says the following. Suppose that there exists a sequence of integral points $ z ^ {t} $ of $ p ^ {t} ( \mathfrak a ) $ ($ t= 0, 1,\dots $) projecting onto each other ( $ \pi _ {r+ t,r+ t- 1 } ( z ^ {t} ) = z ^ {t-1} $) such that: a) $ p ^ {t} ( \mathfrak a ) $ is a regular local equation for $ J( p ^ {t} ( \mathfrak a )) $ at $ z ^ {t} $; and b) there is a neighbourhood $ U ^ {t} $ of $ z ^ {t} $ in $ J( p ^ {t} ( \mathfrak a ) ) $ such that its projection under $ \pi _ {r+ t,r+ t- 1 } $ contains a neighbourhood of $ z ^ {t-1} $ in $ J ( p ^ {t-1} ( \mathfrak a ) ) $ and such that $ \pi _ {r+ t,r+ t- 1 } : U ^ {t} \rightarrow \pi _ {r+ t,r+ t- 1 } ( U ^ {t} ) $ is a fibred manifold. Then $ p ^ {t} ( \mathfrak a ) $ is involutive at $ z ^ {t} $ for $ t $ large enough. This prolongation theorem has important applications in the Lie–Cartan theory of infinite-dimensional Lie groups. The theorem has been extended to cover more general cases [a4].

References

[a1] M. Kuranishi, "On E. Cartan's prolongation theorem of exterior differential systems" Amer. J. Math. , 79 (1957) pp. 1–47 MR0081957
[a2] M. Kuranishi, "Lectures on involutive systems of partial differential equations" , Publ. Soc. Mat. São Paulo (1967) Zbl 0163.12001
[a3] I.M. Singer, S. Sternberg, "The infinite groups of Lie and Cartan I. The transitive groups" J. d'Anal. Math. , 15 (1965) pp. 1–114 MR0217822 Zbl 0277.58008
[a4] M. Matsuda, "Cartan–Kuranishi's prolongation of differential systems combined with that of Lagrange–Jacobi" Publ. Math. RIMS , 3 (1967) pp. 69–84 MR222438
[a5] M.W. Hirsch, "Differential topology" , Springer (1976) pp. Sect. 2.4 MR0448362 Zbl 0356.57001
How to Cite This Entry:
Partial differential equations on a manifold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Partial_differential_equations_on_a_manifold&oldid=51213