Namespaces
Variants
Actions

Parallel lines

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

parallel curves

Diffeomorphic smooth curves in space having parallel tangents at corresponding points. Such are, for example, the smooth components of equi-distant lines on a plane (see Equi-distant) — they are characterized by the fact that the distance between corresponding points is equal to that between corresponding tangents. An example of parallel curves in three-dimensional space: If two surfaces are in Peterson correspondence and have a common conjugate net, then the lines of this net have parallel tangents. Parallel curves in $E^m$ having parallel normals up to order $m<n$ are situated in a certain subspace $E^{n-m}$.

For a linear family of planar convex parallel curves (that is, convex curves whose position vector depends linearly on a parameter $\epsilon$) the Brunn–Minkowski theorem holds: The square root of the area of the domain bounded by them is a concave function of $\epsilon$.

A generalization of the concept of parallelism to the case of lines situated in Lie groups is obtained by means of the concept of equi-pollent vectors.


Comments

For a linear family of planar convex parallel curves there holds the Steiner formula: The area of the domain bounded by them is a polynomial of degree 2 in $\epsilon$. From this follows as a special case the Brunn–Minkowski theorem mentioned above.

References

[a1] M.P. Do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976)
[a2] R. Schneider, "Valuations on convex bodies" P.M. Gruber (ed.) J.M. Wills (ed.) , Convexity and its applications , Birkhäuser (1983) pp. 170–247
How to Cite This Entry:
Parallel lines. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Parallel_lines&oldid=31985
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article