Namespaces
Variants
Actions

Painlevé problem

From Encyclopedia of Mathematics
Revision as of 17:55, 24 September 2012 by Pertti Mattila (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 53A04 Secondary: 53A35 [MSN][ZBL]


The problem and first results

The Painlevé problem is to find a characterization in geometric terms for the removable singularities of bounded analytic functions, or equivalently, for the null-sets of the analytic capacity. P. Painlevé studied this problem already in 1888 and proved a sufficient condition: if a compact plane set $K$ has length (that is, one-dimensional Hausdorff measure) zero, then it is removable for bounded analytic functions. The latter means that whenever $U$ is an open set in $\mathbb C$ containing $K$ and $f$ is bounded and analytic in $U\setminus K$, then $f$ has an analytic extension to $U$. In the other direction; if $K$ has Hausdorff dimension greater than 1 (in particular, if $K$ has interior points), then $K$ is not removable. A deep result due to A.P. Calder\'on from 1977 says that if $K$ is a subset of a rectifiable curve, then $K$ is removable if and only if it has length zero.

Tolsa's solution

In [T] X. Tolsa solved Painlevé's problem. The solution depends on the so-called Menger curvature $c(z_1,z_2,z_3)$ for triples of points in $\mathbb C$ and a formula of M.S. Melnikov relating it to the Cauchy kernel $1/z$. By definition the Menger curvature is the reciprocal of the radius of the circle passing through the points $z_1,z_2,z_3$; it is equal to zero if and only if the three points lie on one line. Tolsa's solution is:

A compact set $K\subset \mathbb C$ is not removable for bounded analytic functions if and only there is a positive non-trivial Borel measure $\mu$ on $\mathbb C$ such that $\mu(D)\leq diam(D)$ for all discs $D$ in $\mathbb C$ and $\int\int\int c(z_1,z_2,z_3)^2d\mu z_1d\mu z_2d\mu z_3<\infty$.


Good general reference is [P].

References

[P] H. Pajot, "Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral" , Spinger-Verlag Lecture Notes 1799, 2002.
[T] X. Tolsa, "Painlevè's problem and the semiadditivity of analytic capacity" , Acta Mathematica, 190 (2003), 105-149.
How to Cite This Entry:
Painlevé problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Painlev%C3%A9_problem&oldid=28145
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article