Namespaces
Variants
Actions

Difference between revisions of "P-divisible group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
p0710302.png
 +
$#A+1 = 70 n = 3
 +
$#C+1 = 70 : ~/encyclopedia/old_files/data/P071/P.0701030 \BMI p\EMI\AAhdivisible group,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''Barsotti–Tate group''
 
''Barsotti–Tate group''
  
A generalization of the concept of a commutative [[Formal group|formal group]] of finite height. The homomorphism induced by multiplication by the prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p0710302.png" /> is an epimorphism for a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p0710303.png" />-divisible group.
+
A generalization of the concept of a commutative [[Formal group|formal group]] of finite height. The homomorphism induced by multiplication by the prime number p $
 +
is an epimorphism for a p $-
 +
divisible group.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p0710304.png" /> be a [[Scheme|scheme]] and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p0710305.png" /> be a prime number. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p0710308.png" />-divisible group of height <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p0710309.png" /> is an inductive system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103010.png" /> of commutative finite group schemes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103011.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103012.png" /> (cf. [[Group scheme|Group scheme]]) such that the sequences
+
Let $  S $
 +
be a [[Scheme|scheme]] and let p $
 +
be a prime number. A p $-
 +
divisible group of height $  h $
 +
is an inductive system $  G = ( G _ {n} , i _ {n} ) $
 +
of commutative finite group schemes $  G _ {n} $
 +
of order p ^ {nh} $(
 +
cf. [[Group scheme|Group scheme]]) such that the sequences
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103013.png" /></td> </tr></table>
+
$$
 +
0 \rightarrow  G _ {n}  \rightarrow ^ { {i _ n} }  G _ {n+} 1  \rightarrow ^ { {\phi _ n} } \
 +
G _ {n+} 1
 +
$$
  
are exact (cf. [[Exact sequence|Exact sequence]]; here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103014.png" /> is the homomorphism of multiplication by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103015.png" />). A morphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103017.png" />-divisible groups is a morphism of the inductive systems. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103018.png" />-divisible group is said to be connected (respectively, étale) if all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103021.png" /> are connected (respectively, étale) group schemes. A connected <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103022.png" />-divisible group over a field of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103023.png" /> is a commutative formal group (considered as the inductive limit of the kernels of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103024.png" />, i.e. of multiplication by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103025.png" />) for which multiplication by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103026.png" /> is an [[Isogeny|isogeny]] [[#References|[6]]]. This fact is generalized to include the case of an arbitrary base scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103027.png" /> on which the homomorphism induced by multiplication by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103028.png" /> is locally nilpotent [[#References|[4]]]. The category of étale <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103029.png" />-divisible groups is equivalent to the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103030.png" />-adic representations of the fundamental group of the scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103031.png" />. Each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103032.png" />-divisible group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103033.png" /> over an Artinian scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103034.png" /> contains a maximal connected subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103035.png" />, which is known as the connected component of the identity, the quotient by which is an étale <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103037.png" />-divisible group. The dimension of the Lie algebra of any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103038.png" /> is said to be the dimension of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103040.png" />-divisible group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103041.png" />.
+
are exact (cf. [[Exact sequence|Exact sequence]]; here $  \phi _ {n} $
 +
is the homomorphism of multiplication by p ^ {n} $).  
 +
A morphism of p $-
 +
divisible groups is a morphism of the inductive systems. A p $-
 +
divisible group is said to be connected (respectively, étale) if all $  G _ {n} $
 +
are connected (respectively, étale) group schemes. A connected p $-
 +
divisible group over a field of characteristic p $
 +
is a commutative formal group (considered as the inductive limit of the kernels of $  \phi _ {n} $,  
 +
i.e. of multiplication by p ^ {n} $)  
 +
for which multiplication by p $
 +
is an [[Isogeny|isogeny]] [[#References|[6]]]. This fact is generalized to include the case of an arbitrary base scheme $  S $
 +
on which the homomorphism induced by multiplication by p $
 +
is locally nilpotent [[#References|[4]]]. The category of étale p $-
 +
divisible groups is equivalent to the category of p $-
 +
adic representations of the fundamental group of the scheme $  S $.  
 +
Each p $-
 +
divisible group $  G $
 +
over an Artinian scheme $  S $
 +
contains a maximal connected subgroup $  G  ^ {0} $,  
 +
which is known as the connected component of the identity, the quotient by which is an étale p $-
 +
divisible group. The dimension of the Lie algebra of any $  {( G  ^ {0} ) } _ {n} $
 +
is said to be the dimension of the p $-
 +
divisible group $  G $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103042.png" /> be an [[Abelian variety|Abelian variety]] over the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103043.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103044.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103045.png" /> be the kernel of the homomorphism of multiplication by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103046.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103047.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103048.png" /> be a natural inclusion. The inductive system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103049.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103050.png" />-divisible group of height <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103051.png" />. Its connected component of the identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103052.png" /> coincides with the formal completion of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103053.png" /> along the unit section, while the height of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103054.png" /> equals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103055.png" />.
+
Let $  A $
 +
be an [[Abelian variety|Abelian variety]] over the field $  k $
 +
of dimension $  d $,  
 +
let $  A ( n) $
 +
be the kernel of the homomorphism of multiplication by p ^ {n} $
 +
in $  A $
 +
and let $  i _ {n} : A ( n) \rightarrow A ( n + 1 ) $
 +
be a natural inclusion. The inductive system $  A ( \infty ) = ( A ( n) , i _ {n} ) $
 +
is a p $-
 +
divisible group of height $  2d $.  
 +
Its connected component of the identity $  A ( \infty )  ^ {0} $
 +
coincides with the formal completion of $  A $
 +
along the unit section, while the height of $  A ( \infty )  ^ {0} $
 +
equals $  2  \mathop{\rm dim}  A $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103056.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103057.png" />-divisible group of height <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103058.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103059.png" /> denote the Cartier dual finite group schemes and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103060.png" /> be the mapping dual to the mapping of multiplication by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103061.png" />. The system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103062.png" /> is then a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103063.png" />-divisible group of height <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103064.png" /> and is called the Serre dual to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103066.png" />-divisible group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103067.png" />. The sum of the dimensions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103068.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103069.png" /> is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103070.png" />.
+
Let $  G = ( G _ {n} , i _ {n} ) $
 +
be a p $-
 +
divisible group of height $  h $,  
 +
let $  {\widehat{G}  } _ {n} $
 +
denote the Cartier dual finite group schemes and let $  \widehat{i}  _ {n} : \widehat{G}  _ {n} \rightarrow \widehat{G}  _ {n+} 1 $
 +
be the mapping dual to the mapping of multiplication by $  p : G _ {n+} 1 \rightarrow G _ {n} $.  
 +
The system $  \widehat{G}  = ( \widehat{G}  _ {n} , \widehat{i}  _ {n} ) $
 +
is then a p $-
 +
divisible group of height $  h $
 +
and is called the Serre dual to the p $-
 +
divisible group $  G $.  
 +
The sum of the dimensions of $  G $
 +
and $  \widehat{G}  $
 +
is equal to $  h $.
  
As in formal groups, so, too, in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103071.png" />-divisible groups, the concept of a [[Dieudonné module|Dieudonné module]], which plays an important role in the deformation theory of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103072.png" />-divisible groups [[#References|[2]]], [[#References|[3]]], [[#References|[4]]] may be introduced.
+
As in formal groups, so, too, in p $-
 +
divisible groups, the concept of a [[Dieudonné module|Dieudonné module]], which plays an important role in the deformation theory of p $-
 +
divisible groups [[#References|[2]]], [[#References|[3]]], [[#References|[4]]] may be introduced.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103073.png" /> is the spectrum of an unequal-characteristic discrete valuation ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103074.png" /> with residue field of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103075.png" />, the structure of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103076.png" />-divisible group is closely connected with the structure of the completion of the algebraic closure of the quotient field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103077.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103078.png" />, considered as a module over the Galois group of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103079.png" /> [[#References|[6]]].
+
If $  S $
 +
is the spectrum of an unequal-characteristic discrete valuation ring $  A $
 +
with residue field of characteristic p $,  
 +
the structure of a p $-
 +
divisible group is closely connected with the structure of the completion of the algebraic closure of the quotient field $  K $
 +
of $  A $,  
 +
considered as a module over the Galois group of the field $  K $[[#References|[6]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I. Barsotti,  "Analytic methods for abelian varieties in positive characteristic" , ''Coll. Théorie des Groupes Algébriques (Bruxelles, 1962)'' , Gauthier-Villars  (1962)  pp. 77–85</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Grothendieck,  "Groupes de Barsotti–Tate et cristaux" , ''Proc. Internat. Congress Mathematicians (Nice, 1970)'' , '''1''' , Gauthier-Villars  (1971)  pp. 431–436</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  B. Mazur,  W. Messing,  "Universal extensions and one-dimensional crystalline cohomology" , Springer  (1974)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  W. Messing,  "The crystals associated to Barsotti–Tate groups: with applications to Abelian schemes" , Springer  (1972)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  J.-P. Serre,  "Groupes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103080.png" />-divisibles (d'après J. Tate)" , ''Sem. Bourbaki'' , '''318''' , Benjamin  (1968)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  J.T. Tate,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103081.png" />-divisible groups"  T.A. Springer (ed.)  et al. (ed.) , ''Proc. Conf. local fields (Driebergen, 1966)'' , Springer  (1967)  pp. 158–183</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I. Barsotti,  "Analytic methods for abelian varieties in positive characteristic" , ''Coll. Théorie des Groupes Algébriques (Bruxelles, 1962)'' , Gauthier-Villars  (1962)  pp. 77–85</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A. Grothendieck,  "Groupes de Barsotti–Tate et cristaux" , ''Proc. Internat. Congress Mathematicians (Nice, 1970)'' , '''1''' , Gauthier-Villars  (1971)  pp. 431–436</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  B. Mazur,  W. Messing,  "Universal extensions and one-dimensional crystalline cohomology" , Springer  (1974)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  W. Messing,  "The crystals associated to Barsotti–Tate groups: with applications to Abelian schemes" , Springer  (1972)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  J.-P. Serre,  "Groupes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103080.png" />-divisibles (d'après J. Tate)" , ''Sem. Bourbaki'' , '''318''' , Benjamin  (1968)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  J.T. Tate,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103081.png" />-divisible groups"  T.A. Springer (ed.)  et al. (ed.) , ''Proc. Conf. local fields (Driebergen, 1966)'' , Springer  (1967)  pp. 158–183</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Demazure,  "Lectures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103082.png" />-divisible groups" , ''Lect. notes in math.'' , '''302''' , Springer  (1972)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Demazure,  "Lectures on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071030/p07103082.png" />-divisible groups" , ''Lect. notes in math.'' , '''302''' , Springer  (1972)</TD></TR></table>

Latest revision as of 08:04, 6 June 2020


Barsotti–Tate group

A generalization of the concept of a commutative formal group of finite height. The homomorphism induced by multiplication by the prime number $ p $ is an epimorphism for a $ p $- divisible group.

Let $ S $ be a scheme and let $ p $ be a prime number. A $ p $- divisible group of height $ h $ is an inductive system $ G = ( G _ {n} , i _ {n} ) $ of commutative finite group schemes $ G _ {n} $ of order $ p ^ {nh} $( cf. Group scheme) such that the sequences

$$ 0 \rightarrow G _ {n} \rightarrow ^ { {i _ n} } G _ {n+} 1 \rightarrow ^ { {\phi _ n} } \ G _ {n+} 1 $$

are exact (cf. Exact sequence; here $ \phi _ {n} $ is the homomorphism of multiplication by $ p ^ {n} $). A morphism of $ p $- divisible groups is a morphism of the inductive systems. A $ p $- divisible group is said to be connected (respectively, étale) if all $ G _ {n} $ are connected (respectively, étale) group schemes. A connected $ p $- divisible group over a field of characteristic $ p $ is a commutative formal group (considered as the inductive limit of the kernels of $ \phi _ {n} $, i.e. of multiplication by $ p ^ {n} $) for which multiplication by $ p $ is an isogeny [6]. This fact is generalized to include the case of an arbitrary base scheme $ S $ on which the homomorphism induced by multiplication by $ p $ is locally nilpotent [4]. The category of étale $ p $- divisible groups is equivalent to the category of $ p $- adic representations of the fundamental group of the scheme $ S $. Each $ p $- divisible group $ G $ over an Artinian scheme $ S $ contains a maximal connected subgroup $ G ^ {0} $, which is known as the connected component of the identity, the quotient by which is an étale $ p $- divisible group. The dimension of the Lie algebra of any $ {( G ^ {0} ) } _ {n} $ is said to be the dimension of the $ p $- divisible group $ G $.

Let $ A $ be an Abelian variety over the field $ k $ of dimension $ d $, let $ A ( n) $ be the kernel of the homomorphism of multiplication by $ p ^ {n} $ in $ A $ and let $ i _ {n} : A ( n) \rightarrow A ( n + 1 ) $ be a natural inclusion. The inductive system $ A ( \infty ) = ( A ( n) , i _ {n} ) $ is a $ p $- divisible group of height $ 2d $. Its connected component of the identity $ A ( \infty ) ^ {0} $ coincides with the formal completion of $ A $ along the unit section, while the height of $ A ( \infty ) ^ {0} $ equals $ 2 \mathop{\rm dim} A $.

Let $ G = ( G _ {n} , i _ {n} ) $ be a $ p $- divisible group of height $ h $, let $ {\widehat{G} } _ {n} $ denote the Cartier dual finite group schemes and let $ \widehat{i} _ {n} : \widehat{G} _ {n} \rightarrow \widehat{G} _ {n+} 1 $ be the mapping dual to the mapping of multiplication by $ p : G _ {n+} 1 \rightarrow G _ {n} $. The system $ \widehat{G} = ( \widehat{G} _ {n} , \widehat{i} _ {n} ) $ is then a $ p $- divisible group of height $ h $ and is called the Serre dual to the $ p $- divisible group $ G $. The sum of the dimensions of $ G $ and $ \widehat{G} $ is equal to $ h $.

As in formal groups, so, too, in $ p $- divisible groups, the concept of a Dieudonné module, which plays an important role in the deformation theory of $ p $- divisible groups [2], [3], [4] may be introduced.

If $ S $ is the spectrum of an unequal-characteristic discrete valuation ring $ A $ with residue field of characteristic $ p $, the structure of a $ p $- divisible group is closely connected with the structure of the completion of the algebraic closure of the quotient field $ K $ of $ A $, considered as a module over the Galois group of the field $ K $[6].

References

[1] I. Barsotti, "Analytic methods for abelian varieties in positive characteristic" , Coll. Théorie des Groupes Algébriques (Bruxelles, 1962) , Gauthier-Villars (1962) pp. 77–85
[2] A. Grothendieck, "Groupes de Barsotti–Tate et cristaux" , Proc. Internat. Congress Mathematicians (Nice, 1970) , 1 , Gauthier-Villars (1971) pp. 431–436
[3] B. Mazur, W. Messing, "Universal extensions and one-dimensional crystalline cohomology" , Springer (1974)
[4] W. Messing, "The crystals associated to Barsotti–Tate groups: with applications to Abelian schemes" , Springer (1972)
[5] J.-P. Serre, "Groupes -divisibles (d'après J. Tate)" , Sem. Bourbaki , 318 , Benjamin (1968)
[6] J.T. Tate, "-divisible groups" T.A. Springer (ed.) et al. (ed.) , Proc. Conf. local fields (Driebergen, 1966) , Springer (1967) pp. 158–183

Comments

References

[a1] M. Demazure, "Lectures on -divisible groups" , Lect. notes in math. , 302 , Springer (1972)
How to Cite This Entry:
P-divisible group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=P-divisible_group&oldid=13472
This article was adapted from an original article by I.V. Dolgachev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article