Namespaces
Variants
Actions

Orthogonalization

From Encyclopedia of Mathematics
Revision as of 14:54, 7 June 2020 by Ulf Rehmann (talk | contribs) (tex encoded by computer)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


orthogonalization process

An algorithm to construct for a given linear independent system of vectors in a Euclidean or Hermitian space $ V $ an orthogonal system of non-zero vectors generating the same subspace in $ V $. The most well-known is the Schmidt (or Gram–Schmidt) orthogonalization process, in which from a linear independent system $ a _ {1} \dots a _ {k} $, an orthogonal system $ b _ {1} \dots b _ {k} $ is constructed such that every vector $ b _ {i} $( $ i = 1 \dots k $) is linearly expressed in terms of $ a _ {1} \dots a _ {i} $, i.e. $ b _ {i} = \sum _ {j=} 1 ^ {i} \gamma _ {ij} a _ {j} $, where $ C = \| \gamma _ {ij} \| $ is an upper-triangular matrix. It is possible to construct the system $ \{ b _ {i} \} $ such that it is orthonormal and such that the diagonal entries $ \gamma _ {ii} $ of $ C $ are positive; the system $ \{ b _ {i} \} $ and the matrix $ C $ are defined uniquely by these conditions.

The Gram–Schmidt process is as follows. Put $ b _ {1} = a _ {1} $; if the vectors $ b _ {1} \dots b _ {i} $ have already been constructed, then

$$ b _ {i+} 1 = a _ {i+} 1 + \sum _ { j= } 1 ^ { i } \alpha _ {j} b _ {j} , $$

where

$$ \alpha _ {j} = - \frac{( a _ {j+} 1 , b _ {j} ) }{( b _ {j} , b _ {j} ) } , $$

$ j = 1 \dots i $, are obtained from the condition of orthogonality of the vector $ b _ {i+} 1 $ to $ b _ {1} \dots b _ {i} $. The geometric sense of this process comprises the fact that at every step, the vector $ b _ {i+} 1 $ is perpendicular to the linear hull of $ a _ {1} \dots a _ {i} $ drawn to the end of the vector $ a _ {i+} 1 $. The product of the lengths $ | b _ {1} | \dots | b _ {k} | $ is equal to the volume of the parallelepiped constructed on the vectors of the system $ \{ a _ {i} \} $ as edges. By normalizing the vectors $ b _ {i} $, the required orthonormal system is obtained. An explicit expression of the vectors $ b _ {i} $ in terms of $ a _ {1} \dots a _ {k} $ is given by the formula

$$ b _ {i} = \left | \begin{array}{llll} ( a _ {1} , a _ {1} ) &\dots &( a _ {1} , a _ {i-} 1 ) &a _ {1} \\ \dots &\dots &\dots &{} \\ ( a _ {i} , a _ {1} ) &\dots &( a _ {i} , a _ {i-} 1 ) &a _ {i} \\ \end{array} \right | $$

where $$ q _ {i} = \frac{b _ {i} }{\sqrt {G _ {i-} 1 G _ {i} } } , $$ is the Gram determinant of the system $ G _ {i} $, with G0=1 by definition. (The determinant at the right-hand side has to be formally expanded by the last column).

The norm of these orthogonal vectors is given by ||bi||=SQRT(Gi/Gi-1). Thus, the corresponding orthonormal system takes the form

$ a _ {1} \dots a _ {i} $

This process can also be used for a countable system of vectors.

The Gram–Schmidt process can be interpreted as expansion of a non-singular square matrix in the product of an orthogonal (or unitary, in the case of a Hermitian space) and an upper-triangular matrix with positive diagonal entries, this product being a particular example of an Iwasawa decomposition.

References

[1] F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , 1 , Chelsea, reprint (1977) (Translated from Russian)
[2] A.G. Kurosh, "Higher algebra" , MIR (1972) (Translated from Russian)
How to Cite This Entry:
Orthogonalization. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Orthogonalization&oldid=49509
This article was adapted from an original article by I.V. Proskuryakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article