Namespaces
Variants
Actions

Octacode

From Encyclopedia of Mathematics
Revision as of 17:01, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Led by modulation considerations, G.D. Forney and M.D. Trott discovered in October 1992 that the Nordstrom–Robinson code was obtained by Gray mapping (cf. also Gray code) a certain code of length and minimum Lee distance Seeing the parity-check matrix of that code,

NJ.A. Sloane identified this code with the octacode [a4], which had turned up already in one of the "holy constructions" of the Leech lattice [a2], Chapt. 24, in particular in the construction based on . The Leech lattice, the conjecturally densest sphere packing in dimensions, can be built up from a product of eight copies of the face-centred cubic lattice , the conjecturally densest sphere packing in three dimensions. The quotient of in its dual lattice is a cyclic group of order , and so to get the Leech lattice from one needs a code of length over .

The preceding matrix shows that the octacode is an extended cyclic code with parity-check polynomial , which reduced modulo yields , which is the generator matrix of the binary Hamming code. It is indeed both the first quaternary Kerdock code and the first quaternary Preparata code [a5] (cf. also Kerdock and Preparata codes), and as such it is self-dual [a3]. It is indeed of type II, i.e. the Euclidean weight of its words is multiple of ; the attached lattice is , the unique even unimodular lattice in dimension [a1]. Its residue code modulo is the doubly even binary self-dual code .

References

[a1] A. Bonnecaze, P. Solé, A.R. Calderbank, "Quaternary construction of unimodular lattices" IEEE Inform. Th. , 41 (1995) pp. 366–376
[a2] J.H. Conway, N.J.A. Sloane, "Sphere packings, lattices and groups" , Springer (1992)
[a3] J.H. Conway, N.J.A. Sloane, "Self-dual codes over the integers modulo " J. Combin. Th. A , 62 (1993) pp. 31–45
[a4] G.D. Forney, N.J.A. Sloane, M.D. Trott, "The Nordstrom Robinson code is the binary image of the octacode" R. Calderbank (ed.) G.D. Forney Jr. (ed.) N. Moayeri (ed.) , Coding and Quantization , Amer. Math. Soc. (1993) pp. 19–26
[a5] A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, P. Solé, "The -linearity of Kerdock, Preparata, Goethals, and related codes" IEEE Trans. Information Th. , 40 (1994) pp. 301–319
How to Cite This Entry:
Octacode. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Octacode&oldid=12845
This article was adapted from an original article by P. Solé (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article