# Normal subgroup

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

normal divisor, invariant subgroup

A subgroup of a group for which the left decomposition of modulo is the same as the right one; in other words, a subgroup such that for any element the cosets and are the same (as sets). In this case one also says that is normal in and writes ; if also , one writes . A subgroup is normal in if and only if it contains all -conjugates of any of its elements (see Conjugate elements), that is . A normal subgroup can also be defined as one that coincides with all its conjugates, as a consequence of which it is also known as a self-conjugate subgroup.

For any homomorphism the set of elements of that are mapped to the unit element of (the kernel of the homomorphism ) is a normal subgroup of , and conversely, every normal subgroup of is the kernel of some homomorphism; in particular, is the kernel of the canonical homomorphism onto the quotient group .

The intersection of any set of normal subgroups is normal, and the subgroup generated by any system of normal subgroups of is normal in .