Namespaces
Variants
Actions

Newton-Leibniz formula

From Encyclopedia of Mathematics
Revision as of 17:19, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The formula expressing the value of a definite integral of a given function over an interval as the difference of the values at the end points of the interval of any primitive (cf. Integral calculus) of the function :

(*)

It is named after I. Newton and G. Leibniz, who both knew the rule expressed by (*), although it was published later.

If is Lebesgue integrable over and is defined by

where is a constant, then is absolutely continuous, almost-everywhere on (everywhere if is continuous on ) and (*) is valid.

A generalization of the Newton–Leibniz formula is the Stokes formula for orientable manifolds with a boundary.


Comments

The theorem expressed by the Newton–Leibniz formula is called the fundamental theorem of calculus, cf. e.g. [a1].

References

[a1] K.R. Stromberg, "Introduction to classical real analysis" , Wadsworth (1981) pp. 318ff
[a2] W. Rudin, "Real and complex analysis" , McGraw-Hill (1966) pp. 165ff
How to Cite This Entry:
Newton-Leibniz formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Newton-Leibniz_formula&oldid=17006
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article