Namespaces
Variants
Actions

Natural operator in differential geometry

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In the simplest case, one considers two natural bundles over $m$-dimensional manifolds $F$ and $G$, cf. Natural transformation in differential geometry. A natural operator $A : F \rightarrow G$ is a system of operators $A _ {M}$ transforming every section $s$ of $F M$ into a section $A _ { M } ( s )$ of $G M$ for every $m$-dimensional manifold $M$ with the following properties:

1) $A$ commutes with the action of diffeomorphisms, i.e.

\begin{equation*} A _ { N } ( F f \circ s \circ f ^ { - 1 } ) = ( G f ) \circ A _ { M } ( s ) \circ f ^ { - 1 } \end{equation*}

for every diffeomorphism $f : M \rightarrow N$;

2) $A$ has the localization property, i.e. $A _ { U } ( s | _ { U } ) = A _ { M } ( s ) | _ { U }$ for every open subset $U \subset M$;

3) $A$ is regular, i.e. every smoothly parametrized family of sections is transformed into a smoothly parametrized family.

This idea has been generalized to other categories over manifolds and to operators defined on certain distinguished classes of sections in [a2].

The $k$th order natural operators $F \rightarrow G$ are in bijection with the natural transformations of the $k$th jet prolongation $J ^ { k } F$ into $G$. In this case the methods from [a2] can be applied for finding natural operators. So it is important to have some criteria guaranteeing that all natural operators of a prescribed type have finite order. Fundamental results in this direction were deduced by J. Slovák, who developed a far-reaching generalization of the Peetre theorem to non-linear problems, [a2]. However, in certain situations there exist natural operators of infinite order.

The first result about natural operators was deduced by R. Palais, [a3], who proved that all linear natural operators transforming exterior $p$-forms into exterior $( p + 1 )$-forms are constant multiples of the exterior differential (cf. also Exterior form). In [a2] new methods are used to prove that for $p \geq 1$ linearity even follows from naturality.

Many concrete problems on finding all natural operators are solved in [a2].

The following result on the natural operators on morphisms of fibred manifolds is closely related to the geometry of the calculus of variations. On a fibred manifold with $m$-dimensional base, $m \geq 2$, there is no natural operator transforming $r$th order Lagrangeans into Poincaré–Cartan morphisms for $r \geq 3$, see [a1]. In this case, one has to use an additional structure to distinguish a single Poincaré-Cartan form determined by a Lagrangean.

References

[a1] I. Kolář, "Natural operators related with the variational calculus" , Proc. Conf. Diff. Geom. Appl., Silesian Univ. Opava (1993) pp. 461–472
[a2] I. Kolář, P.W. Michor, J. Slovák, "Natural operations in differential geometry" , Springer (1993)
[a3] R. Palais, "Natural operations on differential forms" Trans. Amer. Math. Soc. , 92 (1959) pp. 125–141
How to Cite This Entry:
Natural operator in differential geometry. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Natural_operator_in_differential_geometry&oldid=49928
This article was adapted from an original article by Ivan Kolář (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article