Namespaces
Variants
Actions

N-group

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


2020 Mathematics Subject Classification: Primary: 08A [MSN][ZBL]

A generalization of the concept of a group to the case of an $n$-ary operation. An $n$-group is a universal algebra with one $n$-ary associative operation that is uniquely invertible at each place (cf. Algebraic operation). The theory of $n$-groups for $n\geq 3$ substantially differs from the theory of groups (i.e. $2$-groups). Thus, if $n\geq 3$, an $n$-group has no analogue of the unit element.

Let $\Gamma(\circ)$ be a group with multiplication operation $\circ$; let $n\geq 3$ be an arbitrary integer. Then an $n$-ary operation $\omega$ on the set $\Gamma$ can be defined as follows:

$$a_1\dots a_n\ \omega = a_1\circ\dots\circ a_n$$

The resulting $n$-group is called the $n$-group determined by the group $\Gamma(\circ)$. Necessary and sufficient conditions for an $n$-group to be of this form are known [1]. Any $n$-group is imbeddable in such an $n$-group (Post's theorem).

References

[1] A.G. Kurosh, "Lectures on general algebra" , Chelsea (1963) (Translated from Russian)


Comments

The usual notion of a $p$-group (i.e., a group of order a power of $p$) is not to be mixed up with that of an $n$-group in the above sense.

References

[a1] D. Balci, "Zur Theorie der topologischen $n$-Gruppen" , Minerva , Munich (1981)
[a2] S.A. Rusakov, "The subgroup structure of Dedekind $n$-ary groups" , Finite groups (Proc. Gomel. Sem.) , Minsk (1978) pp. 81–104 (In Russian)
[a3] S.A. Rusakov, "On the theory of nilpotent $n$-ary groups" , Finite groups (Proc. Gomel. Sem.) , Minsk (1978) pp. 104–130 (In Russian)
How to Cite This Entry:
N-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=N-group&oldid=34737
This article was adapted from an original article by V.D. Belousov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article