Namespaces
Variants
Actions

Montel theorem

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Montel's theorem on the approximation of analytic functions by polynomials: If $ D $ is an open set in the complex $ z $-plane not containing $ z = \infty $ and $ f ( z) $ is a single-valued function, analytic at each point $ z \in D $, then there is a sequence of polynomials $ \{ P _ {n} ( z) \} $ converging to $ f ( z) $ at each $ z \in D $. This theorem is one of the basic results in the theory of approximation of functions of a complex variable; it was obtained by P. Montel .

Montel's theorem on compactness conditions for a family of holomorphic functions (principle of compactness, see ): Let $ \Phi = \{ f ( z) \} $ be an infinite family of holomorphic functions in a domain $ D $ of the complex $ z $-plane, then $ \Phi $ is pre-compact, that is, any subsequence $ \{ f _ {k} ( z) \} \subset \Phi $ has a subsequence converging uniformly on compact subsets of $ D $, if $ \Phi $ is uniformly bounded in $ D $. This theorem can be generalized to a domain $ D $ in $ \mathbf C ^ {n} $, $ n \geq 1 $ (see Compactness principle).

Montel's theorem on conditions for normality of a family of holomorphic functions (principle of normality, see [2]): Let $ \Phi = \{ f ( z) \} $ be an infinite family of holomorphic functions in a domain $ D $ of the complex $ z $-plane. If there are two distinct values $ a $ and $ b $ that are not taken by any of the functions $ f ( z) \in \Phi $, then $ \Phi $ is a normal family, that is, any sequence $ \{ f _ {k} ( z) \} \subset \Phi $ has a sequence uniformly converging on compact subsets of $ D $ to a holomorphic function or to $ \infty $. The conditions of this theorem can be somewhat weakened: It suffices that all $ f ( z) \in \Phi $ do not take one of the values, say $ a $, and that the other value $ b $ is taken at most $ m $ times, $ 1 \leq m < \infty $. This theorem can be generalized to a domain $ D $ in $ \mathbf C ^ {n} $, $ n \geq 1 $.

References

[1] P. Montel, "Leçons sur les séries de polynomes à une variable complexe" , Gauthier-Villars (1910)
[2] P. Montel, "Leçons sur les familles normales de fonctions analytiques et leurs applications" , Gauthier-Villars (1927)

Comments

References

[a1] A.I. Markushevich, "Theory of functions of a complex variable" , 3, Sect. 11; 1, Sect. 86; 3, Sect. 50, Chelsea (1977) (Translated from Russian)
How to Cite This Entry:
Montel theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Montel_theorem&oldid=52070
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article