Namespaces
Variants
Actions

Difference between revisions of "Moment problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fixing subscripts)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
m0645901.png
 +
$#A+1 = 236 n = 0
 +
$#C+1 = 236 : ~/encyclopedia/old_files/data/M064/M.0604590 Moment problem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
One of the [[Interpolation|interpolation]] problems in the real or complex domain.
 
One of the [[Interpolation|interpolation]] problems in the real or complex domain.
  
The first precise formulation of the original version of the moment problem in the real domain is due to T.J. Stieltjes (1894). He proposed and solved the following problem in connection with the study of continued fractions (cf. [[Continued fraction|Continued fraction]]): Given a sequence of real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m0645901.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m0645902.png" /> determine a bounded and non-decreasing function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m0645903.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m0645904.png" /> such that
+
The first precise formulation of the original version of the moment problem in the real domain is due to T.J. Stieltjes (1894). He proposed and solved the following problem in connection with the study of continued fractions (cf. [[Continued fraction|Continued fraction]]): Given a sequence of real numbers $  \{ \mu _ {n} \} $,
 +
$  n = 0 , 1, \dots $
 +
determine a bounded and non-decreasing function $  \psi ( x) $
 +
on $  [ 0 , + \infty ) $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m0645905.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\int\limits _ { 0 } ^  \infty  x  ^ {n}  d \psi  = \mu _ {n} ,\ \
 +
n = 0 , 1 , \dots
 +
$$
  
 
As in every interpolation problem, the solution of (1) consists of two parts.
 
As in every interpolation problem, the solution of (1) consists of two parts.
  
 
===Problem A.===
 
===Problem A.===
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m0645906.png" /> be the set of all sequences of real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m0645907.png" /> for which the infinite system of equations (1) has at least one solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m0645908.png" /> with the above properties; determine necessary and sufficient (constructive) conditions which must be satisfied by the numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m0645909.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459010.png" /> in order that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459011.png" />.
+
Let $  \mathfrak M $
 +
be the set of all sequences of real numbers $  \{ \mu _ {n} \} $
 +
for which the infinite system of equations (1) has at least one solution $  \psi $
 +
with the above properties; determine necessary and sufficient (constructive) conditions which must be satisfied by the numbers $  \mu _ {n} $,
 +
$  n = 0 , 1 \dots $
 +
in order that $  \{ \mu _ {n} \} \in \mathfrak M $.
  
 
===Problem B.===
 
===Problem B.===
Determine the set of all solutions in the class of bounded non-decreasing functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459012.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459013.png" /> satisfying the infinite system (1) for given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459015.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459016.png" />.
+
Determine the set of all solutions in the class of bounded non-decreasing functions $  \psi $
 +
on $  [ 0 , + \infty ) $
 +
satisfying the infinite system (1) for given $  \mu _ {n} $,
 +
$  n = 0 , 1 \dots $
 +
$  \{ \mu _ {n} \} \in \mathfrak M $.
 +
 
 +
The left-hand sides of (1) were called "momentmoments" by Stieltjes. He borrowed the terminology from mechanics. If  $  d \psi ( x) $
 +
is interpreted as the mass on  $  [ x , x + dx ] $,
 +
then the integral  $  \int _ {0}  ^ {X} d \psi ( t) $
 +
is the mass on  $  [ 0 , X ] $.  
 +
The integrals (1) for  $  n = 1 $
 +
and  $  n = 2 $
 +
are then, respectively, the first (static) and second (inertial) moments with respect to the origin  $  x = 0 $
 +
of the total mass  $  \int _ {0}  ^  \infty  d \psi ( x) $ (this corresponds to  $  n = 0 $
 +
in (1)) on  $  [ 0 , \infty ) $.
 +
Generalizing this idea, Stieltjes called the integral
 +
 
 +
$$
 +
\int\limits _ { 0 } ^  \infty  x  ^ {n}  d \psi ( x)
 +
$$
 +
 
 +
the moment of order  $  n $ (relative to  $  x = 0 $)
 +
of the given mass  $  \int _ {0}  ^  \infty  d \psi ( x) $
 +
with  $  \psi $
 +
as distribution on  $  [ 0 , + \infty ) $.
 +
 
 +
Stieltjes related the solution of the moment problem in the following way to the "natural" continued fraction associated with the integral
 +
 
 +
$$ \tag{2 }
 +
I ( z , \psi )  = \
 +
\int\limits _ { 0 } ^  \infty 
 +
 
 +
\frac{d \psi ( x) }{z + x }
  
The left-hand sides of (1) were called "momentmoments" by Stieltjes. He borrowed the terminology from mechanics. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459017.png" /> is interpreted as the mass on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459018.png" />, then the integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459019.png" /> is the mass on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459020.png" />. The integrals (1) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459022.png" /> are then, respectively, the first (static) and second (inertial) moments with respect to the origin <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459023.png" /> of the total mass <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459024.png" /> (this corresponds to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459025.png" /> in (1)) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459026.png" />. Generalizing this idea, Stieltjes called the integral
+
  \sim  
 +
\frac{\mu _ {0} }{z}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459027.png" /></td> </tr></table>
+
-  
 +
\frac{\mu _ {1} }{z  ^ {2} }
  
the moment of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459029.png" /> (relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459030.png" />) of the given mass <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459031.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459032.png" /> as distribution on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459033.png" />.
+
+
 +
\frac{\mu _ {2} }{z  ^ {3} }
  
Stieltjes related the solution of the moment problem in the following way to the "natural"  continued fraction associated with the integral
+
-
 +
\frac{\mu _ {3} }{z ^ {4} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459034.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
+ \dots ,
 +
$$
  
 
more precisely, to the formal series
 
more precisely, to the formal series
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459035.png" /></td> </tr></table>
+
$$
 +
\sum _ { n= 0} ^  \infty 
 +
( - 1 )  ^ {n}
 +
 
 +
\frac{\mu _ {n} }{z  ^ {n+ 1} }
 +
.
 +
$$
 +
 
 +
Corresponding to the integral  $  I ( z , \psi ) $
 +
there is a continued fraction:
 +
 
 +
$$ \tag{3 }
 +
I ( z , \psi )  \sim \
 +
 
 +
\frac{1 \mid  }{\mid  a _ {1} z }
 +
 
 +
+
 +
\frac{1 \mid  }{\mid  a _ {2} }
 +
 
 +
+
 +
\frac{1 \mid  }{\mid  a _ {3} z }
 +
 
 +
+
 +
\frac{1 \mid  }{\mid  a _ {4} }
  
Corresponding to the integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459036.png" /> there is a continued fraction:
+
+ \dots ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459037.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
and also a "closely related" continued fraction
  
and also a "closely related"  continued fraction
+
$$ \tag{4 }
 +
I ( z , \psi ) \sim \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459038.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
\frac{\lambda _ {1} \mid  }{\mid  z + c _ {1} }
  
The continued fraction (4) is obtained from (3) by "reductions" of the form
+
-
 +
\frac{\lambda _ {2} \mid }{\mid z + c _ {2} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459039.png" /></td> </tr></table>
+
-  
 +
\frac{\lambda _ {3} \mid  }{\mid  z + c _ {3} }
  
Making use of the theory of continued fractions, Stieltjes proved that in a certain sense a necessary and sufficient condition for the solvability of (1) (which is equivalent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459040.png" />) is the positivity of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459041.png" /> in (3), which, in turn, is a consequence of the positivity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459042.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459043.png" /> in (4). In terms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459044.png" /> these conditions are equivalent to the positivity of the determinants
+
- \dots .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459045.png" /></td> </tr></table>
+
The continued fraction (4) is obtained from (3) by "reductions" of the form
 +
 
 +
$$
 +
z -
 +
\frac{\alpha \mid  }{\mid  1 }
 +
 
 +
-
 +
\frac{\beta \mid  }{\mid  z - \gamma }
 +
 
 +
= z - \alpha -
 +
 
 +
\frac{\alpha \beta }{z - ( \beta + \gamma ) }
 +
.
 +
$$
 +
 
 +
Making use of the theory of continued fractions, Stieltjes proved that in a certain sense a necessary and sufficient condition for the solvability of (1) (which is equivalent to  $  \{ \mu _ {n} \} \in \mathfrak M $)
 +
is the positivity of all  $  a _ {n} $
 +
in (3), which, in turn, is a consequence of the positivity of  $  \lambda _ {n} $
 +
and  $  c _ {n} $
 +
in (4). In terms of  $  \mu _ {n} $
 +
these conditions are equivalent to the positivity of the determinants
 +
 
 +
$$
 +
\Delta  = \
 +
\mathop{\rm det}  \| \mu _ {i+ j} \| _ {i , j = 0 }  ^ {n}
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459046.png" /></td> </tr></table>
+
$$
 +
\Delta _ {n}  ^ {( 1)}  = \
 +
\mathop{\rm det}  \| \mu _ {i + j + 1 }  \| _ {i , j = 0 }  ^ {n} .
 +
$$
  
The moment problem (1) is called well-posed or determined for a given sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459047.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459048.png" />, if the system (1) has a unique solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459049.png" />. On the other hand, it has been shown that if the system (1) has more than one solution for a given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459051.png" />, then it has an infinite number of solutions.
+
The moment problem (1) is called well-posed or determined for a given sequence $  \{ \mu _ {n} \} $,  
 +
$  \{ \mu _ {n} \} \in \mathfrak M $,  
 +
if the system (1) has a unique solution $  \psi $.  
 +
On the other hand, it has been shown that if the system (1) has more than one solution for a given $  \mu _ {n} $,  
 +
$  \{ \mu _ {n} \} \in \mathfrak M $,  
 +
then it has an infinite number of solutions.
  
 
Example: the two functions
 
Example: the two functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459052.png" /></td> </tr></table>
+
$$
 +
\psi _ {1} ( x)  = \
 +
\int\limits _ { 0 } ^ { x }  t ^ {- \mathop{\rm ln}  t }  d t
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459053.png" /></td> </tr></table>
+
$$
 +
\psi _ {2} ( x)  = \
 +
\int\limits _ { 0 } ^ { x }  t ^ {-  \mathop{\rm ln}  t }
 +
[ 1 - \theta  \sin ( \pi  \mathop{\rm ln}  t ) ]  d t ,\ \
 +
\theta \in [ 0 , 1 ] ,
 +
$$
  
 
have the same moments
 
have the same moments
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459054.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { 0 } ^  \infty 
 +
x  ^ {n}  d \psi _ {1} ( x)  = \
 +
\int\limits _ { 0 } ^  \infty 
 +
x  ^ {n}  d \psi _ {2} ( x)
 +
$$
 +
 
 +
for all  $  n = 0 , 1 ,\dots $.
 +
 
 +
Stieltjes effectively constructed certain solutions of (1), which, of course, all coincide in a well-known sense if (1) is well-posed. When the moment problem (1) is ill-posed or undetermined, the Stieltjes solutions have a number of extremal properties. Stieltjes subsequently showed that (1) is well-posed or ill-posed depending on the convergence or divergence of the continued fraction (3) (which is equivalent to the divergence or convergence of the series  $  \sum _ {n= 0}  ^  \infty  a _ {n} $).  
 +
Here the fraction (3) may be convergent to  $  I ( z , \psi ) $,
 +
whereas the series
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459055.png" />.
+
$$
 +
\sum _ { n= 0} ^  \infty 
  
Stieltjes effectively constructed certain solutions of (1), which, of course, all coincide in a well-known sense if (1) is well-posed. When the moment problem (1) is ill-posed or undetermined, the Stieltjes solutions have a number of extremal properties. Stieltjes subsequently showed that (1) is well-posed or ill-posed depending on the convergence or divergence of the continued fraction (3) (which is equivalent to the divergence or convergence of the series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459056.png" />). Here the fraction (3) may be convergent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459057.png" />, whereas the series
+
\frac{( - 1 ) ^ {n} \mu _ {n} }{z  ^ {n+ 1} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459058.png" /></td> </tr></table>
+
$$
  
may, at the same time, diverge for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459059.png" />.
+
may, at the same time, diverge for all $  z \in \mathbf C $.
  
Preceding the work of Stieltjes , the moment problem in the real domain was considered in a less general and less precise formulation; such as, for example, in a series of papers by P.L. Chebyshev [[#References|[2]]] and A.A. Markov [[#References|[3]]]. They mainly investigated the following problem: Give a description of the properties of a class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459060.png" /> of functions defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459061.png" /> such that the relations
+
Preceding the work of Stieltjes , the moment problem in the real domain was considered in a less general and less precise formulation; such as, for example, in a series of papers by P.L. Chebyshev [[#References|[2]]] and A.A. Markov [[#References|[3]]]. They mainly investigated the following problem: Give a description of the properties of a class $  U $
 +
of functions defined on $  ( - \infty , + \infty ) $
 +
such that the relations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459062.png" /></td> </tr></table>
+
$$
 +
p ( x)  \in  U
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459063.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
$$ \tag{5 }
 +
\int\limits _ {- \infty } ^ { {+ }  \infty }
 +
x  ^ {n} p ( x)  d x  = \
 +
\int\limits _ {- \infty } ^ { {+ }  \infty }
 +
x ^ {n } e ^ {- x  ^ {2} }  d x ,\  n = 0 , 1 \dots
 +
$$
  
 
lead to the identity
 
lead to the identity
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459064.png" /></td> </tr></table>
+
$$
 +
p ( x)  = e ^ {- x  ^ {2} } .
 +
$$
  
In other words, the question here concerns a maximally complete and constructive characterization of the uniqueness class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459065.png" /> of the interpolation problem (5). The solution of the moment problem (5) plays a major role in probability theory and mathematical statistics. Also of major significance are the polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459066.png" />, the dominators of the successive approximations (that is, the approximants) of the continued fraction (4). The study of the properties of the polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459067.png" /> later initiated a broad field of research into the theory of [[Orthogonal polynomials|orthogonal polynomials]].
+
In other words, the question here concerns a maximally complete and constructive characterization of the uniqueness class $  U $
 +
of the interpolation problem (5). The solution of the moment problem (5) plays a major role in probability theory and mathematical statistics. Also of major significance are the polynomials $  \omega _ {n} ( x) $,  
 +
the dominators of the successive approximations (that is, the approximants) of the continued fraction (4). The study of the properties of the polynomials $  \{ \omega _ {n} ( x) \} $
 +
later initiated a broad field of research into the theory of [[Orthogonal polynomials|orthogonal polynomials]].
  
H. Hamburger (1920) generalized the moment problem (1) to the case of the whole real line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459068.png" />. Here the consideration of negative values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459069.png" /> introduced a number of peculiarities and was non-trivial. Hamburger, making essential use of Helly's selection principle (cf. [[Helly theorem|Helly theorem]]), aimed at obtaining necessary and sufficient conditions for the solvability of the system
+
H. Hamburger (1920) generalized the moment problem (1) to the case of the whole real line $  \mathbf R = ( - \infty , + \infty ) $.  
 +
Here the consideration of negative values of $  x $
 +
introduced a number of peculiarities and was non-trivial. Hamburger, making essential use of Helly's selection principle (cf. [[Helly theorem|Helly theorem]]), aimed at obtaining necessary and sufficient conditions for the solvability of the system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459070.png" /></td> <td valign="top" style="width:5%;text-align:right;">(6)</td></tr></table>
+
$$ \tag{6 }
 +
\int\limits _ {- \infty } ^ { {+ }  \infty }
 +
x  ^ {n}  d \psi ( x)  = \mu _ {n} ,\ \
 +
n = 0 , 1 \dots
 +
$$
  
thereby completely solving the problem of convergence of the continued fractions (3) and (4) generated by (6). The union of problems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459071.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459072.png" /> in relation to (6) is called the moment problem of equation (6). Hamburger obtained a criterion for the existence of a unique solution of the moment problem for (6). In this connection, the moment problem for (6) may be ill-posed, whereas at the same time the corresponding moment problem (1) (with the same <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459073.png" />) may be well-posed (have a unique solution). R. Nevanlinna (1922) gave a solution to the moment problem (6) using the integrals
+
thereby completely solving the problem of convergence of the continued fractions (3) and (4) generated by (6). The union of problems $  A $
 +
and $  B $
 +
in relation to (6) is called the moment problem of equation (6). Hamburger obtained a criterion for the existence of a unique solution of the moment problem for (6). In this connection, the moment problem for (6) may be ill-posed, whereas at the same time the corresponding moment problem (1) (with the same $  \mu _ {n} $)  
 +
may be well-posed (have a unique solution). R. Nevanlinna (1922) gave a solution to the moment problem (6) using the integrals
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459074.png" /></td> </tr></table>
+
$$
 +
I ( z , \psi )  = \
 +
\int\limits _ {- \infty } ^ { {+ }  \infty }
  
and studied properties of these solutions. He made an important observation about the so-called "extremal solution" of the moment problem (6).
+
\frac{d \psi ( x) }{z - x }
 +
  ,\ \
 +
x \in \mathbf C \setminus \mathbf R ,
 +
$$
  
M. Riesz (1921) obtained solutions of the moment problem (6) based on the theory of quasi-orthogonal polynomials. These consist of linear combinations of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459075.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459076.png" /> are constants and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459077.png" /> is the dominator of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459078.png" />-th approximant of the continued fraction (4) associated with (6). He observed a close connection between the solutions of the moment problem (6) and the validity of Parseval's formula for the system of orthogonal polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459079.png" />. T. Carleman (1923–1926) established connections between the moment problem (6), the theory of quasi-analytic functions and the theory of quadratic forms in a countable set of variables. He also obtained the most general criterion for the well-posedness of the moment problem (6). F. Hausdorff (1923) obtained a criterion for the solvability of the moment problem (6) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459080.png" /> under the condition that the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459081.png" /> in (6) is a constant outside a given interval. He effectively constructed the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459082.png" /> of (6) (which, under the assumption given above, is always unique); this provides an opportunity to obtain criteria for additional properties of solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459083.png" /> of (6) (continuity, differentiability, etc.). Carleman and subsequently M.H. Stone (1932) fully investigated (6) based on results in the theory of Jacobi quadratic forms and the theory of singular integral equations. E.K. Haviland (1935) and H. Cramér (1937) extended Riesz's theory of (6) to the multi-dimensional case.
+
and studied properties of these solutions. He made an important observation about the so-called "extremal solution" of the moment problem (6).
 +
 
 +
M. Riesz (1921) obtained solutions of the moment problem (6) based on the theory of quasi-orthogonal polynomials. These consist of linear combinations of the form $  A _ {n} \omega _ {n} ( x) + A _ {n- 1} \omega _ {n- 1} ( x) $,  
 +
where $  A _ {k} $
 +
are constants and $  \omega _ {k} ( x) $
 +
is the dominator of the $  k $-th approximant of the continued fraction (4) associated with (6). He observed a close connection between the solutions of the moment problem (6) and the validity of Parseval's formula for the system of orthogonal polynomials $  \{ \omega _ {k} ( x) \} $.  
 +
T. Carleman (1923–1926) established connections between the moment problem (6), the theory of quasi-analytic functions and the theory of quadratic forms in a countable set of variables. He also obtained the most general criterion for the well-posedness of the moment problem (6). F. Hausdorff (1923) obtained a criterion for the solvability of the moment problem (6) $  ( \iff \{ \mu _ {n} \} \in \mathfrak M ) $
 +
under the condition that the function $  \psi ( x) $
 +
in (6) is a constant outside a given interval. He effectively constructed the solution $  \psi ( x) $
 +
of (6) (which, under the assumption given above, is always unique); this provides an opportunity to obtain criteria for additional properties of solutions $  \psi ( x) $
 +
of (6) (continuity, differentiability, etc.). Carleman and subsequently M.H. Stone (1932) fully investigated (6) based on results in the theory of Jacobi quadratic forms and the theory of singular integral equations. E.K. Haviland (1935) and H. Cramér (1937) extended Riesz's theory of (6) to the multi-dimensional case.
  
 
Numerous different generalizations of the moment problem have also been considered. Mainly these are variants (or a combination of variants) of the following two themes.
 
Numerous different generalizations of the moment problem have also been considered. Mainly these are variants (or a combination of variants) of the following two themes.
  
Replacement of the powers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459084.png" /> in the integrals (6) by "moment" sequences of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459085.png" /> of another form, and replacement of the left-hand sides of (6) by other kinds of integrals (for example, the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459086.png" /> is replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459087.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459089.png" />, has been studied) or even by operators acting in abstract spaces.
+
Replacement of the powers $  x  ^ {n} $
 +
in the integrals (6) by "moment" sequences of functions $  \{ \phi _ {n} ( x) \} $
 +
of another form, and replacement of the left-hand sides of (6) by other kinds of integrals (for example, the case when $  d \psi ( x) $
 +
is replaced by $  \phi ( x)  d x $,  
 +
where $  \phi ( x) \in L _ {p} $,  
 +
$  p \geq  1 $,  
 +
has been studied) or even by operators acting in abstract spaces.
  
Thus, with respect to the first theme, one has the so-called trigonometric moment problem, which is the following: Given an infinite sequence of numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459090.png" />, determine a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459091.png" />, non-decreasing on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459092.png" />, satisfying
+
Thus, with respect to the first theme, one has the so-called trigonometric moment problem, which is the following: Given an infinite sequence of numbers $  \{ c _ {n} \} _ {n = - \infty }  ^  \infty  $,  
 +
determine a function $  \psi ( x) $,  
 +
non-decreasing on $  [ - \pi , \pi ] $,  
 +
satisfying
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459093.png" /></td> <td valign="top" style="width:5%;text-align:right;">(7)</td></tr></table>
+
$$ \tag{7 }
  
that is, solve problems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459094.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459095.png" /> for the system (7).
+
\frac{1}{2 \pi }
  
Precise formulations of certain results concerning the theory of moment problems in the real domain are given below. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459096.png" /> be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459097.png" />-dimensional Euclidean space. A set function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459098.png" />, defined on the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m06459099.png" /> of all Borel sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590100.png" />, is called a distribution if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590101.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590102.png" /> and if
+
\int\limits _ {- \pi } ^  \pi  e  ^ {inx}  d \psi ( x)  = c _ {n} ,\ \
 +
n = 0 , \pm  1 \dots
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590103.png" /></td> </tr></table>
+
that is, solve problems  $  A $
 +
and  $  B $
 +
for the system (7).
  
whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590104.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590105.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590106.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590107.png" />.
+
Precise formulations of certain results concerning the theory of moment problems in the real domain are given below. Let  $  \mathbf R  ^ {n} $
 +
be the  $  n $-dimensional Euclidean space. A set function  $  \Phi ( e) $,  
 +
defined on the family  $  {\mathcal B} $
 +
of all Borel sets in  $  \mathbf R  ^ {n} $,  
 +
is called a distribution if  $  \Phi ( e) \geq  0 $
 +
for all $  e \in {\mathcal B} $
 +
and if
  
The spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590108.png" /> of a distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590109.png" /> is the set of all points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590110.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590111.png" /> for an arbitrary open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590112.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590113.png" />. Let
+
$$
 +
\sum _ { i= 1} ^  \infty  \Phi ( e _ {i} )  = \Phi
 +
\left ( \sum _ { i= 1} ^  \infty  e _ {i} \right )
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590114.png" /></td> <td valign="top" style="width:5%;text-align:right;">(8)</td></tr></table>
+
whenever  $  e _ {i} \cap e _ {j} = \emptyset $,
 +
$  i \neq j $,
 +
where  $  e _ {i} \in {\mathcal B} $
 +
for all  $  i , j = 1 , 2 , \dots $.
  
be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590115.png" />-fold infinite sequence of real numbers. The question is: What are necessary and sufficient conditions to be satisfied by the numbers (8) in order that there is a distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590116.png" />, with spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590117.png" /> contained in a given closed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590118.png" />, which is a solution of the system
+
The spectrum  $  \sigma ( \Phi ) $
 +
of a distribution  $  \Phi $
 +
is the set of all points  $  x = ( x _ {1}, \dots, x _ {n} ) \in \mathbf R  ^ {n} $
 +
such that $  \Phi ( G) > 0 $
 +
for an arbitrary open set $  G \subset  \mathbf R  ^ {n} $
 +
containing  $  x $.  
 +
Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590119.png" /></td> <td valign="top" style="width:5%;text-align:right;">(9)</td></tr></table>
+
$$ \tag{8 }
 +
\{ \mu _ {i _ {1}  \dots i _ {n} } \} ,\ \
 +
i _ {1} \dots i _ {n} = 0 , 1 \dots
 +
$$
  
(problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590120.png" /> for (9)). Problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590121.png" /> for (9) is formulated similarly. The union of problems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590122.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590123.png" /> for (9) is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590125.png" />-moment problem. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590126.png" />-moment problem is well-posed if its solution is in some way unique. Otherwise the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590127.png" />-moment problem (9) is called ill-posed.
+
be an  $  n $-fold infinite sequence of real numbers. The question is: What are necessary and sufficient conditions to be satisfied by the numbers (8) in order that there is a distribution  $  \Phi $,
 +
with spectrum  $  \sigma ( \Phi ) $
 +
contained in a given closed set  $  F $,
 +
which is a solution of the system
 +
 
 +
$$ \tag{9 }
 +
\int\limits _ {\mathbf R  ^ {n} }
 +
t _ {1} ^ {i _ {1} } \dots t _ {n} ^ {i _ {n} }  d \Phi  = \mu _ {i _ {1}  \dots i _ {n} } ,\ \
 +
i _ {1} \dots i _ {n} = 0 , 1 ,\dots
 +
$$
 +
 
 +
(problem  $  A $
 +
for (9)). Problem $  B $
 +
for (9) is formulated similarly. The union of problems $  A $
 +
and $  B $
 +
for (9) is called the $  F $-moment problem. The $  F $-moment problem is well-posed if its solution is in some way unique. Otherwise the $  F $-moment problem (9) is called ill-posed.
  
 
===Theorem.===
 
===Theorem.===
A necessary and sufficient condition that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590128.png" />-moment problem (9) has a solution in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590129.png" /> is that the condition
+
A necessary and sufficient condition that the $  F $-moment problem (9) has a solution in $  \mathbf R  ^ {2} $
 +
is that the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590130.png" /></td> </tr></table>
+
$$
 +
\sum a _ {i} b _ {j} \mu _ {ij}  \geq  0
 +
$$
  
 
holds for any polynomial
 
holds for any polynomial
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590131.png" /></td> </tr></table>
+
$$
 +
P ( u , v )  = \sum a _ {i} b _ {j} u  ^ {i} v  ^ {j}
 +
$$
  
taking non-negative values for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590132.png" />.
+
taking non-negative values for all $  ( u , v ) \in F $.
  
This theorem is the basis for obtaining solvability conditions (that is, for the solution of problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590133.png" />) for different versions of (9). Here are some of them.
+
This theorem is the basis for obtaining solvability conditions (that is, for the solution of problem $  A $)  
 +
for different versions of (9). Here are some of them.
  
 
===Theorem 1.===
 
===Theorem 1.===
In order that the moment problem (6) (with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590134.png" />) have a solution it is necessary that
+
In order that the moment problem (6) (with $  F = \mathbf R $)  
 +
have a solution it is necessary that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590135.png" /></td> </tr></table>
+
$$
 +
\Delta _ {n}  =   \mathop{\rm det}  \| \mu _ {i+ j }\| _ {i,j= 0}  ^ {n}  \geq  0 ,\ \
 +
n = 0 , 1 ,\dots .
 +
$$
  
 
For the existence of a solution to the moment problem (6) having a spectrum which is not a finite number of points, it is necessary and sufficient that
 
For the existence of a solution to the moment problem (6) having a spectrum which is not a finite number of points, it is necessary and sufficient that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590136.png" /></td> </tr></table>
+
$$
 +
\Delta _ {n}  > 0 ,\ \
 +
n = 0 , 1 ,\dots .
 +
$$
  
For the existence of a solution to the moment problem (6) having a spectrum consisting of precisely <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590137.png" /> different points, it is necessary and sufficient that
+
For the existence of a solution to the moment problem (6) having a spectrum consisting of precisely $  k + 1 $
 +
different points, it is necessary and sufficient that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590138.png" /></td> </tr></table>
+
$$
 +
\Delta _ {0} \dots \Delta _ {k}  > 0 ,\ \
 +
\Delta _ {k+ 1}  = \Delta _ {k+ 2}  = \dots = 0 .
 +
$$
  
 
In the latter case the moment problem (6) is always well-posed.
 
In the latter case the moment problem (6) is always well-posed.
  
 
===Theorem 2.===
 
===Theorem 2.===
In order that the moment problem (1) (with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590139.png" />) is solvable it is necessary that
+
In order that the moment problem (1) (with $  F = [ 0 , \infty ) $)  
 +
is solvable it is necessary that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590140.png" /></td> </tr></table>
+
$$
 +
\Delta _ {n}  =   \mathop{\rm det}  \| \mu _ {i+ j} \| _ {i,j= 0}  ^ {n}  \geq  0
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590141.png" /></td> </tr></table>
+
$$
 +
\Delta _ {n}  ^ {( 1)}  = \
 +
\mathop{\rm det}  \| \mu _ {i+ j+ 1} \| _ {i,j= 0}  ^ {n}  \geq  0 ,\ \
 +
n = 0 , 1 ,\dots .
 +
$$
  
 
For the existence of a solution to the moment problem (1) having a spectrum which is not a finite number of points, it is necessary and sufficient that
 
For the existence of a solution to the moment problem (1) having a spectrum which is not a finite number of points, it is necessary and sufficient that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590142.png" /></td> </tr></table>
+
$$
 +
\Delta _ {n}  > 0 \  \textrm{ and } \ \
 +
\Delta _ {n}  ^ {( 1)}  > 0 ,\ \
 +
n = 0 , 1 ,\dots .
 +
$$
  
Necessary and sufficient conditions have also been obtained for the existence of a solution to the moment problem (1) having a spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590143.png" /> consisting of precisely <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590144.png" /> points different from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590145.png" />. The conditions are similar to those given in the final part of Theorem 1.
+
Necessary and sufficient conditions have also been obtained for the existence of a solution to the moment problem (1) having a spectrum $  \sigma ( \Phi ) $
 +
consisting of precisely $  k + 1 $
 +
points different from $  x = 0 $.  
 +
The conditions are similar to those given in the final part of Theorem 1.
  
 
===Theorem 3.===
 
===Theorem 3.===
A necessary and sufficient condition that the Hausdorff moment problem in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590146.png" />,
+
A necessary and sufficient condition that the Hausdorff moment problem in $  \mathbf R $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590147.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { 0 } ^ { 1 }  x  ^ {n}  d \Phi  = \mu _ {n} ,\ \
 +
n = 0 , 1 \dots \ \
 +
F = [ 0 , 1 ] ,
 +
$$
  
has a solution, is that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590148.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590149.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590150.png" /> denotes the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590151.png" />-th difference operator).
+
has a solution, is that $  \Delta  ^ {k} \mu _ {v} \geq  0 $
 +
for all $  k , v = 0 , 1 ,\dots $ (here $  \Delta  ^ {k} $
 +
denotes the $  k $-th difference operator).
  
 
===Theorem 4.===
 
===Theorem 4.===
A necessary and sufficient condition that the Hausdorff moment problem in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590152.png" />,
+
A necessary and sufficient condition that the Hausdorff moment problem in $  \mathbf R  ^ {2} $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590153.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { 0 } ^ { 1 }
 +
\int\limits _ { 0 } ^ { 1 }
 +
u  ^ {i} v  ^ {j}  d \Phi  = \mu _ {ij} ,\ \
 +
i , j = 0 , 1 \dots \ \
 +
F = [ 0 , 1 ] \times [ 0 , 1 ] ,
 +
$$
  
 
has a solution, is that
 
has a solution, is that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590154.png" /></td> </tr></table>
+
$$
 +
\Delta _ {1}  ^ {n} \Delta _ {2}  ^ {m} \mu _ {ij}  \geq  0 ,\ \
 +
n , m , i , j = 0 , 1 ,\dots .
 +
$$
  
 
===Theorem 5.===
 
===Theorem 5.===
 
The moment problem (6) is well-posed if
 
The moment problem (6) is well-posed if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590155.png" /></td> <td valign="top" style="width:5%;text-align:right;">(10)</td></tr></table>
+
$$ \tag{10 }
 +
\sum _ { n= 0} ^  \infty 
 +
 
 +
\frac{1}{\mu _ {2n}  ^ {1/2n} }
 +
  = + \infty .
 +
$$
  
Necessary and sufficient conditions are known (see, for example, [[#References|[4]]]) which must be satisfied by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590156.png" /> in order that the moment problem (6) (the moment problem (1)) be well-posed; however, these conditions are less simple than the sufficient condition (10) and their formulation is somewhat cumbersome.
+
Necessary and sufficient conditions are known (see, for example, [[#References|[4]]]) which must be satisfied by $  \mu _ {n} $
 +
in order that the moment problem (6) (the moment problem (1)) be well-posed; however, these conditions are less simple than the sufficient condition (10) and their formulation is somewhat cumbersome.
  
The moment problem in the complex domain is the name of a wide class of interpolation problems described as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590157.png" /> be an open simply-connected domain in the complex plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590158.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590159.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590160.png" /> be the space of analytic functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590161.png" /> with topology defined by uniform convergence on arbitrary compact sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590162.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590163.png" /> be the space of all functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590164.png" /> analytic in a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590165.png" /> of the point at infinity for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590166.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590167.png" /> (the latter is another way of saying that the set of singularities of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590168.png" /> lies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590169.png" />). The topology in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590170.png" /> is defined by uniform convergence on one of the curves of the family of simple closed Jordan curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590171.png" /> having the property: For any compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590172.png" /> there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590173.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590174.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590175.png" /> denotes the open simply-connected domain with boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590176.png" /> lying inside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590177.png" />). It is well known that the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590178.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590179.png" /> are dual.
+
The moment problem in the complex domain is the name of a wide class of interpolation problems described as follows. Let $  D $
 +
be an open simply-connected domain in the complex plane $  \mathbf C $,  
 +
$  \infty \notin D $;  
 +
let $  A ( D) $
 +
be the space of analytic functions in $  D $
 +
with topology defined by uniform convergence on arbitrary compact sets $  K \subset  D $;  
 +
let $  A  ^ {*} ( D) $
 +
be the space of all functions $  \gamma ( z) $
 +
analytic in a neighbourhood $  V  ^  \infty  = V  ^  \infty  ( \gamma ) $
 +
of the point at infinity for which $  \gamma ( \infty ) = 0 $
 +
and $  \supp  \gamma \subset  D $ (the latter is another way of saying that the set of singularities of $  \gamma \in A  ^ {*} ( D) $
 +
lies in $  D $).  
 +
The topology in $  A  ^ {*} ( D) $
 +
is defined by uniform convergence on one of the curves of the family of simple closed Jordan curves $  \{ \Gamma _  \alpha  \} \subset  D $
 +
having the property: For any compact set $  K \subset  D $
 +
there is a $  \Gamma _ {\alpha _ {0}  } = \Gamma _ {\alpha _ {0}  } ( K) \in \{ \Gamma _  \alpha  \} $
 +
such that $  K \subset  \mathop{\rm int}  \Gamma _ {\alpha _ {0}  } ( D) $ (here $  \mathop{\rm int}  \Gamma _  \alpha  $
 +
denotes the open simply-connected domain with boundary $  \Gamma _ {\alpha _ {0}  } $
 +
lying inside $  \Gamma _ {\alpha _ {0}  } $).  
 +
It is well known that the spaces $  A ( D) $
 +
and $  A  ^ {*} ( D) $
 +
are dual.
  
The moment problem in a complex domain is as follows. Given an integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590180.png" />, functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590181.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590182.png" />, a univalent function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590183.png" />, and a set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590184.png" /> sequences of complex numbers
+
The moment problem in a complex domain is as follows. Given an integer $  p > 1 $,  
 +
functions 0 \not\equiv A _ {s} ( z) \in A ( D) $,  
 +
$  s = 0, \dots, p - 1 $,
 +
a univalent function $  W ( z) \in A ( D) $,  
 +
and a set of $  p $
 +
sequences of complex numbers
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590185.png" /></td> </tr></table>
+
$$
 +
\alpha _ {p}  = \{ \{ a _ {ns} \} :\
 +
n = 0 , 1 ,\dots; s = 0 \dots p - 1 \} ,
 +
$$
  
can one find a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590186.png" /> for which
+
can one find a function $  \gamma ( z) \in A  ^ {*} ( D) $
 +
for which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590187.png" /></td> <td valign="top" style="width:5%;text-align:right;">(11)</td></tr></table>
+
$$ \tag{11 }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590188.png" /></td> </tr></table>
+
\frac{1}{2 \pi }
 +
 
 +
\int\limits _  \Gamma
 +
[ W ( z) ]  ^ {np} A _ {s} ( z) \gamma ( z)  d z  = a _ {ns} ,
 +
$$
 +
 
 +
$$
 +
= 0 , 1 ,\dots; \  s  = 0, \dots, p - 1 ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590189.png" /></td> </tr></table>
+
$$
 +
\supp  \gamma  \subset    \mathop{\rm int}  \Gamma  \subset  \Gamma  \subset  D ?
 +
$$
  
In general, it is not true for every given collection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590190.png" /> that the infinite system (11) has at least one solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590191.png" />. Therefore a collection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590192.png" /> is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590195.png" />-admissible if there is (at least one) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590196.png" /> satisfying (11).
+
In general, it is not true for every given collection $  \alpha _ {p} $
 +
that the infinite system (11) has at least one solution $  \gamma ( z) \in A  ^ {*} ( D) $.  
 +
Therefore a collection $  \alpha _ {p} $
 +
is called $  D $-admissible if there is (at least one) $  \gamma ( z) \in A  ^ {*} ( D) $
 +
satisfying (11).
  
 
===Problem A.===
 
===Problem A.===
Determine necessary and sufficient conditions (of a constructive nature) for the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590197.png" />-admissibility of a collection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590198.png" />.
+
Determine necessary and sufficient conditions (of a constructive nature) for the $  D $-admissibility of a collection $  \alpha _ {p} $.
  
 
===Problem B.===
 
===Problem B.===
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590199.png" /> be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590200.png" />-admissible. The question is: How can one determine the complete set of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590201.png" /> satisfying (11) with respect to given numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590202.png" /> in the right-hand side of (11)?
+
Let $  \alpha _ {p} $
 +
be $  D $-admissible. The question is: How can one determine the complete set of functions $  \gamma ( z) \in A  ^ {*} ( D) $
 +
satisfying (11) with respect to given numbers $  a _ {ns} $
 +
in the right-hand side of (11)?
  
The union of problems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590203.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590204.png" /> is called a moment problem in the complex domain. Problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590205.png" />, for the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590206.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590207.png" />, was first treated in 1937 by A.O. Gel'fond [[#References|[6]]]; he discussed whether, in principle, problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590208.png" /> can be solved (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590209.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590210.png" /> the system (11) always has a unique solution for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590211.png" />-admissible right-hand sides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590212.png" />). Numerous special cases of problems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590213.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590214.png" /> have been investigated (see [[#References|[7]]]–[[#References|[10]]]). Using tools from the theory of boundary value problems allows one to attain (see [[#References|[11]]]–[[#References|[14]]]) a fairly complete investigation of the moment problem in the complex domain.
+
The union of problems $  A $
 +
and $  B $
 +
is called a moment problem in the complex domain. Problem $  B $,  
 +
for the case $  p = 1 $
 +
and $  A _ {0} ( z) = 1 $,  
 +
was first treated in 1937 by A.O. Gel'fond [[#References|[6]]]; he discussed whether, in principle, problem $  B $
 +
can be solved (for $  p = 1 $
 +
and $  A _ {0} ( z) = 1 $
 +
the system (11) always has a unique solution for $  D $-admissible right-hand sides $  a _ {ns} $).  
 +
Numerous special cases of problems $  A $
 +
and $  B $
 +
have been investigated (see [[#References|[7]]]–[[#References|[10]]]). Using tools from the theory of boundary value problems allows one to attain (see [[#References|[11]]]–[[#References|[14]]]) a fairly complete investigation of the moment problem in the complex domain.
  
A domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590215.png" /> is called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590216.png" />-invariant, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590217.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590218.png" />.
+
A domain $  G \subset  \mathbf C $
 +
is called $  2 \pi / p $-invariant, $  G \in  \mathop{\rm Inv} ( 2 \pi / p ) $,  
 +
if $  \mathop{\rm exp} ( 2 \pi i / p) G \equiv G $.
  
An exhaustive solution to the moment problem in a complex domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590219.png" /> under natural assumptions concerning the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590220.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590221.png" />, has been given in [[#References|[10]]], when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590222.png" />, as well as for a domain whose image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590223.png" /> can be imbedded in some domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590224.png" />. The theory of boundary value problems can be fruitfully used to obtain a complete solution by quadrature of problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590225.png" /> for domains of the types indicated. In particular, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590226.png" /> every domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590227.png" /> belongs to the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590228.png" />. Thus necessary and sufficient conditions for the uniqueness of the solution of the system (11) have been found for domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590229.png" /> whose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590230.png" />-images cannot be imbedded. These domains are important in applications. Here there are two essentially different cases: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590231.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590232.png" /> (in the latter, the question of the uniqueness of the solution to (11) has been exhaustively studied on the assumption that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590233.png" />). Several versions of the moment problem (11) are possible with regard to the behaviour of the corresponding functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590234.png" />.
+
An exhaustive solution to the moment problem in a complex domain $  D $
 +
under natural assumptions concerning the functions $  A _ {s} ( z) $,  
 +
$  s = 0 \dots p - 1 $,  
 +
has been given in [[#References|[10]]], when $  W ( D) = G \in  \mathop{\rm Inv} ( 2 \pi / p ) $,  
 +
as well as for a domain whose image $  W ( D) $
 +
can be imbedded in some domain $  G \in  \mathop{\rm Inv} ( 2 \pi / p ) $.  
 +
The theory of boundary value problems can be fruitfully used to obtain a complete solution by quadrature of problem $  B $
 +
for domains of the types indicated. In particular, for $  p = 1 $
 +
every domain $  G $
 +
belongs to the class $  \mathop{\rm Inv} ( 2 \pi / p ) $.  
 +
Thus necessary and sufficient conditions for the uniqueness of the solution of the system (11) have been found for domains $  D $
 +
whose $  W $-images cannot be imbedded. These domains are important in applications. Here there are two essentially different cases: 0 \in W ( D) $
 +
and 0 \notin W ( D) $ (in the latter, the question of the uniqueness of the solution to (11) has been exhaustively studied on the assumption that $  n = 0 , \pm  1 ,\dots $).  
 +
Several versions of the moment problem (11) are possible with regard to the behaviour of the corresponding functions on $  \Gamma $.
  
 
A number of well known interpolation problems reduce to the moment problem in the complex domain by means of the Borel transformation and its generalizations (see [[Comparison function|Comparison function]] and [[Borel transform|Borel transform]]), for example:
 
A number of well known interpolation problems reduce to the moment problem in the complex domain by means of the Borel transformation and its generalizations (see [[Comparison function|Comparison function]] and [[Borel transform|Borel transform]]), for example:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590235.png" /></td> </tr></table>
+
$$
 +
F ^ { ( n) } ( h n )  = a _ {n} ; \ \
 +
F ^ { ( n) } ( \omega  ^ {n} )  = a _ {n} ;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590236.png" /></td> </tr></table>
+
$$
 +
F ( \omega  ^ {n} )  = a _ {n} ; \  \Delta  ^ {n} F ( h n )  = a _ {n} ;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590237.png" /></td> </tr></table>
+
$$
 +
F ^ { ( n p + l _ {s} ) } ( \alpha _ {s} )  = a _ {ns} ;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590238.png" /></td> </tr></table>
+
$$
 +
= 0 , 1, \dots \  s  = 0, \dots, p - 1 ,\  l _ {s}  = 0 , 1 ;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590239.png" /></td> </tr></table>
+
$$
 +
\Delta ^ {2 n + l _ {s} } F ( \alpha _ {s} + 2 h n )
 +
= a _ {ns} ,\  s = 0 , 1 ; \  l _ {s} = 0 , 1 ; \  n = 0 , 1 ,\dots .
 +
$$
  
In addition, many theorems on integer-valued functions reduce to very specific cases of problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064590/m064590240.png" />.
+
In addition, many theorems on integer-valued functions reduce to very specific cases of problem $  A $.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1a]</TD> <TD valign="top"> T.J. Stieltjes,   "Recherches sur les fractions continues" ''Ann. Fac. Sci. Univ. Toulouse'' , '''8''' (1894) pp. 1–122</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> T.J. Stieltjes,   "Recherches sur les fractions continues" ''Ann. Fac. Sci. Univ. Toulouse'' , '''9''' (1895) pp. 1–47</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.L. Chebyshev,   "Oeuvres de P.L. Tchebycheff" , '''1–2''' , Chelsea (1961) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.A. Markov,   "Selected work on the theory of continued fractions and the theory of functions deviating least from zero" , Moscow-Leningrad (1948) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.A. Shohat,   J.D. Tamarkin,   "The problem of moments" , Amer. Math. Soc. (1950)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N.I. Akhiezer,   "The classical moment problem and related questions in analysis" , Hafner (1965) (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> A.O. [A.O. Gel'fond] Gelfond,   "Differenzenrechnung" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> R.C. Buck,   "Interpolation series" ''Trans. Amer. Math. Soc.'' , '''64''' (1948) pp. 283–298</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> R.C. Buck,   "Integral valued entire functions" ''Duke Math. J.'' , '''15''' (1948) pp. 879–891</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> R.C. Buck,   "On admissibility of sequences and a theorem of Pólya" ''Comment. Mat. Helv.'' , '''27''' (1953) pp. 75–80</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> I.F. Lokhin,   "An interpolation problem for entire functions" ''Mat. Sb.'' , '''35''' : 2 (1954) pp. 223–230 (In Russian)</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> Yu.A. Kaz'min,   "On a general problem in the theory of interpolation" ''Soviet Math. Dokl.'' , '''11''' (1970) pp. 1357–1361 ''Dokl. Akad. Nauk SSSR'' , '''194''' : 6 (1970) pp. 1251–1254</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> Yu.A. Kaz'min,   "On the moment problem in the complex domain" ''Soviet Math. Dokl.'' , '''13''' (1972) pp. 833–837 ''Dokl. Akad. Nauk SSSR'' , '''204''' : 6 (1972) pp. 1309–1312</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top"> Yu.A. Kaz'min,   "The general moment problem in the complex domain. Uniqueness theorems" ''Soviet Math. Dokl.'' , '''13''' (1972) pp. 868–872 ''Dokl. Akad. Nauk SSSR'' , '''205''' : 1 (1972) pp. 19–22</TD></TR><TR><TD valign="top">[14]</TD> <TD valign="top"> L. Bieberbach,   "Analytische Fortsetzung" , Springer (1955)</TD></TR><TR><TD valign="top">[15]</TD> <TD valign="top"> F.D. Gakhov,   "Boundary value problems" , Pergamon (1966) (Translated from Russian)</TD></TR><TR><TD valign="top">[16]</TD> <TD valign="top"> M.G. Krein,   A.A. Nudel'man,   "The Markov moment problem and extremal problems" , Amer. Math. Soc. (1977) (Translated from Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1a]</TD> <TD valign="top"> T.J. Stieltjes, "Recherches sur les fractions continues" ''Ann. Fac. Sci. Univ. Toulouse'' , '''8''' (1894) pp. 1–122 {{MR|1508159}} {{ZBL|25.0326.01}} </TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> T.J. Stieltjes, "Recherches sur les fractions continues" ''Ann. Fac. Sci. Univ. Toulouse'' , '''9''' (1895) pp. 1–47 {{MR|1508160}} {{ZBL|0861.01036}} {{ZBL|0861.01037}} {{ZBL|0838.01036}} {{ZBL|0862.01038}} {{ZBL|35.0978.01}} {{ZBL|25.0326.01}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.L. Chebyshev, "Oeuvres de P.L. Tchebycheff" , '''1–2''' , Chelsea (1961) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.A. Markov, "Selected work on the theory of continued fractions and the theory of functions deviating least from zero" , Moscow-Leningrad (1948) (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.A. Shohat, J.D. Tamarkin, "The problem of moments" , Amer. Math. Soc. (1950) {{MR|0008438}} {{ZBL|0041.43302}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N.I. Akhiezer, "The classical moment problem and related questions in analysis" , Hafner (1965) (Translated from Russian) {{MR|0184042}} {{ZBL|0135.33803}} </TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> A.O. [A.O. Gel'fond] Gelfond, "Differenzenrechnung" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian) {{MR|0094608}} {{ZBL|0080.07601}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> R.C. Buck, "Interpolation series" ''Trans. Amer. Math. Soc.'' , '''64''' (1948) pp. 283–298 {{MR|0029985}} {{ZBL|0033.36401}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> R.C. Buck, "Integral valued entire functions" ''Duke Math. J.'' , '''15''' (1948) pp. 879–891 {{MR|0029984}} {{ZBL|0033.36402}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> R.C. Buck, "On admissibility of sequences and a theorem of Pólya" ''Comment. Mat. Helv.'' , '''27''' (1953) pp. 75–80 {{MR|0054706}} {{ZBL|0050.08103}} </TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> I.F. Lokhin, "An interpolation problem for entire functions" ''Mat. Sb.'' , '''35''' : 2 (1954) pp. 223–230 (In Russian)</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> Yu.A. Kaz'min, "On a general problem in the theory of interpolation" ''Soviet Math. Dokl.'' , '''11''' (1970) pp. 1357–1361 ''Dokl. Akad. Nauk SSSR'' , '''194''' : 6 (1970) pp. 1251–1254 {{MR|}} {{ZBL|0215.42202}} </TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> Yu.A. Kaz'min, "On the moment problem in the complex domain" ''Soviet Math. Dokl.'' , '''13''' (1972) pp. 833–837 ''Dokl. Akad. Nauk SSSR'' , '''204''' : 6 (1972) pp. 1309–1312 {{MR|}} {{ZBL|0261.30022}} </TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top"> Yu.A. Kaz'min, "The general moment problem in the complex domain. Uniqueness theorems" ''Soviet Math. Dokl.'' , '''13''' (1972) pp. 868–872 ''Dokl. Akad. Nauk SSSR'' , '''205''' : 1 (1972) pp. 19–22 {{MR|}} {{ZBL|0261.30023}} </TD></TR><TR><TD valign="top">[14]</TD> <TD valign="top"> L. Bieberbach, "Analytische Fortsetzung" , Springer (1955) {{MR|0068621}} {{ZBL|0064.06902}} </TD></TR><TR><TD valign="top">[15]</TD> <TD valign="top"> F.D. Gakhov, "Boundary value problems" , Pergamon (1966) (Translated from Russian) {{MR|0198152}} {{ZBL|0141.08001}} </TD></TR><TR><TD valign="top">[16]</TD> <TD valign="top"> M.G. Krein, A.A. Nudel'man, "The Markov moment problem and extremal problems" , Amer. Math. Soc. (1977) (Translated from Russian) {{MR|0458081}} {{ZBL|0361.42014}} </TD></TR></table>
 
 
 
 
  
 
====Comments====
 
====Comments====
Line 248: Line 612:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Grommer,   "Ganze transzendente Funktionen mit lauter reellen Nullstellen" ''J. Reine Angew. Math.'' , '''144''' (1914) pp. 212–238</TD></TR><TR><TD valign="top">[a2a]</TD> <TD valign="top"> H. Hamburger,   "Ueber eine Erweiterung des Stieltjesschen Momentenproblems I" ''Math. Ann.'' , '''81''' (1920) pp. 235–319</TD></TR><TR><TD valign="top">[a2b]</TD> <TD valign="top"> H. Hamburger,   "Ueber eine Erweiterung des Stieltjesschen Momentenproblems II" ''Math. Ann.'' , '''82''' (1921) pp. 120–164</TD></TR><TR><TD valign="top">[a2c]</TD> <TD valign="top"> H. Hamburger,   "Ueber eine Erweiterung des Stieltjesschen Momentenproblems III" ''Math. Ann.'' , '''82''' (1921) pp. 168–187</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P.R. Graves (ed.) , ''Padé approximants and their application (Canterbury, 1972)'' , Acad. Press (1973)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E.B. Saff (ed.) R.S. Varga (ed.) , ''Padé and Rational Approximation (Tampa, 1976)'' , Acad. Press (1977)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> L. Wuytack (ed.) , ''Padé approximation and its applications (Antwerp, 1979)'' , ''Lect. notes in math.'' , '''765''' , Springer (1979)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> M.G. de Bruin (ed.) H. van Rossum (ed.) , ''Padé approximation and its applications (Amsterdam, 1980)'' , ''Lect. notes in math.'' , '''888''' , Springer (1981)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> J. Gilewicz (ed.) , ''Proc. 1-st French-Polish Meeting on Padé Approximation and Convergence Acceleration Techniques (Warszaw, 1981)'' , '''CPT-81/PE 1354''' , CNRS (1982)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> H. Werner (ed.) H.-J. Bünger (ed.) , ''Padé approximation and its application (Bad Honnef, 1983)'' , ''Lect. notes in math.'' , '''1071''' , Springer (1984)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> P.R. Graves-Morris (ed.) E.B. Saff (ed.) R.S. Varga (ed.) , ''Rational Approximation and Interpolation (Tampa, 1983)'' , ''Lect. notes in math.'' , '''1105''' , Springer (1984)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> C. Brezinski (ed.) A. Draux (ed.) A.P. Magnus (ed.) P. Maroni (ed.) A. Ronveaux (ed.) , ''Polynômes Orthogonaux et Applications (Bar-le-Duc, 1984)'' , ''Lect. notes in math.'' , '''1171''' , Springer (1985)</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> J. Gilewicz (ed.) M. Pindor (ed.) W. Siemasko (ed.) , ''Rational Approximation and its Application in Mathematics and Physics (Lańcut, 1985)'' , ''Lect. notes in math.'' , '''1237''' , Springer (1987)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> A. Cuyt (ed.) , ''Nonlinear numerical methods and rational approximation (Antwerp, 1987)'' , Reidel (1988)</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> J. Antolin,   A. Cruz,   ''J. Phys.'' , '''G12''' (1986) pp. 297</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> C.T. Corcoran,   P.W. Langhoff,   "Moment-theory approximations for nonnegative spectral densities" ''J. Math. Phys.'' , '''18''' (1977) pp. 651–657</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> P.W. Langhoff,   B.J. Dalton (ed.) et al. (ed.) , ''Moment methods in many Fermion systems'' , Plenum (Forthcoming)</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> W.B. Jones,   W.J. Thron,   H. Waadeland,   "A strong Stieltjes moment problem" ''Trans. Amer. Math. Soc.'' , '''261''' (1980) pp. 503–528</TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top"> W.J. Thron,   "Survey of continued fraction methods in solving moment problems and related topics" W.B. Jones (ed.) W.J. Thron (ed.) E.H. Waadeland (ed.) , ''Analytic theory of continued fractions'' , ''Lect. notes in math.'' , '''932''' , Springer (1982) pp. 4–36</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top"> W.B. Jones,   W.J. Thron,   O. Njastad,   "Orthogonal Laurent polynomials and the strong Hamburger moment problem" ''J. Math. Anal. Applic.'' , '''98''' (1984) pp. 528–554</TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top"> W.B. Jones,   O. Njastad,   W.J. Thron,   "Continued fractions associated with the trigonometric and other strong moment problems" (To appear)</TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top"> W.B. Jones,   O. Njastad,   W.J. Thron,   "Perron–Carathéodory continued fractions" (To appear)</TD></TR><TR><TD valign="top">[a21]</TD> <TD valign="top"> N.I. Akhiezer,   M. Krein,   "Some questions in the theory of moments" , Amer. Math. Soc. (1962) (Translated from Russian)</TD></TR><TR><TD valign="top">[a22]</TD> <TD valign="top"> H.J. Landau,   "The classical moment problem: Hilbertian proofs" ''J. Funct. Anal.'' , '''38''' (1980) pp. 255–272</TD></TR><TR><TD valign="top">[a23]</TD> <TD valign="top"> H.J. Landau (ed.) , ''Moments in mathematics'' , Amer. Math. Soc. (1987) pp. 56ff</TD></TR><TR><TD valign="top">[a24]</TD> <TD valign="top"> I.P. Natanson,   "Constructive theory of functions" , '''1–2''' , F. Ungar (1964–1965) (Translated from Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Grommer, "Ganze transzendente Funktionen mit lauter reellen Nullstellen" ''J. Reine Angew. Math.'' , '''144''' (1914) pp. 212–238 {{MR|}} {{ZBL|45.0650.03}} {{ZBL|45.0650.02}} </TD></TR><TR><TD valign="top">[a2a]</TD> <TD valign="top"> H. Hamburger, "Ueber eine Erweiterung des Stieltjesschen Momentenproblems I" ''Math. Ann.'' , '''81''' (1920) pp. 235–319</TD></TR><TR><TD valign="top">[a2b]</TD> <TD valign="top"> H. Hamburger, "Ueber eine Erweiterung des Stieltjesschen Momentenproblems II" ''Math. Ann.'' , '''82''' (1921) pp. 120–164</TD></TR><TR><TD valign="top">[a2c]</TD> <TD valign="top"> H. Hamburger, "Ueber eine Erweiterung des Stieltjesschen Momentenproblems III" ''Math. Ann.'' , '''82''' (1921) pp. 168–187</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P.R. Graves (ed.) , ''Padé approximants and their application (Canterbury, 1972)'' , Acad. Press (1973)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E.B. Saff (ed.) R.S. Varga (ed.) , ''Padé and Rational Approximation (Tampa, 1976)'' , Acad. Press (1977) {{MR|458010}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> L. Wuytack (ed.) , ''Padé approximation and its applications (Antwerp, 1979)'' , ''Lect. notes in math.'' , '''765''' , Springer (1979) {{MR|561441}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> M.G. de Bruin (ed.) H. van Rossum (ed.) , ''Padé approximation and its applications (Amsterdam, 1980)'' , ''Lect. notes in math.'' , '''888''' , Springer (1981)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> J. Gilewicz (ed.) , ''Proc. 1-st French-Polish Meeting on Padé Approximation and Convergence Acceleration Techniques (Warszaw, 1981)'' , '''CPT-81/PE 1354''' , CNRS (1982)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> H. Werner (ed.) H.-J. Bünger (ed.) , ''Padé approximation and its application (Bad Honnef, 1983)'' , ''Lect. notes in math.'' , '''1071''' , Springer (1984)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> P.R. Graves-Morris (ed.) E.B. Saff (ed.) R.S. Varga (ed.) , ''Rational Approximation and Interpolation (Tampa, 1983)'' , ''Lect. notes in math.'' , '''1105''' , Springer (1984)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> C. Brezinski (ed.) A. Draux (ed.) A.P. Magnus (ed.) P. Maroni (ed.) A. Ronveaux (ed.) , ''Polynômes Orthogonaux et Applications (Bar-le-Duc, 1984)'' , ''Lect. notes in math.'' , '''1171''' , Springer (1985)</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> J. Gilewicz (ed.) M. Pindor (ed.) W. Siemasko (ed.) , ''Rational Approximation and its Application in Mathematics and Physics (Lańcut, 1985)'' , ''Lect. notes in math.'' , '''1237''' , Springer (1987)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> A. Cuyt (ed.) , ''Nonlinear numerical methods and rational approximation (Antwerp, 1987)'' , Reidel (1988) {{MR|1005348}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> J. Antolin, A. Cruz, ''J. Phys.'' , '''G12''' (1986) pp. 297</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> C.T. Corcoran, P.W. Langhoff, "Moment-theory approximations for nonnegative spectral densities" ''J. Math. Phys.'' , '''18''' (1977) pp. 651–657 {{MR|0437991}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> P.W. Langhoff, B.J. Dalton (ed.) et al. (ed.) , ''Moment methods in many Fermion systems'' , Plenum (Forthcoming)</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> W.B. Jones, W.J. Thron, H. Waadeland, "A strong Stieltjes moment problem" ''Trans. Amer. Math. Soc.'' , '''261''' (1980) pp. 503–528 {{MR|0580900}} {{ZBL|0449.30004}} </TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top"> W.J. Thron, "Survey of continued fraction methods in solving moment problems and related topics" W.B. Jones (ed.) W.J. Thron (ed.) E.H. Waadeland (ed.) , ''Analytic theory of continued fractions'' , ''Lect. notes in math.'' , '''932''' , Springer (1982) pp. 4–36 {{MR|690451}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top"> W.B. Jones, W.J. Thron, O. Njastad, "Orthogonal Laurent polynomials and the strong Hamburger moment problem" ''J. Math. Anal. Applic.'' , '''98''' (1984) pp. 528–554 {{MR|0730525}} {{ZBL|0535.44006}} </TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top"> W.B. Jones, O. Njastad, W.J. Thron, "Continued fractions associated with the trigonometric and other strong moment problems" (To appear)</TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top"> W.B. Jones, O. Njastad, W.J. Thron, "Perron–Carathéodory continued fractions" (To appear)</TD></TR><TR><TD valign="top">[a21]</TD> <TD valign="top"> N.I. Akhiezer, M. Krein, "Some questions in the theory of moments" , Amer. Math. Soc. (1962) (Translated from Russian) {{MR|167806}} {{ZBL|0117.32702}} </TD></TR><TR><TD valign="top">[a22]</TD> <TD valign="top"> H.J. Landau, "The classical moment problem: Hilbertian proofs" ''J. Funct. Anal.'' , '''38''' (1980) pp. 255–272 {{MR|0587909}} {{ZBL|0446.44006}} </TD></TR><TR><TD valign="top">[a23]</TD> <TD valign="top"> H.J. Landau (ed.) , ''Moments in mathematics'' , Amer. Math. Soc. (1987) pp. 56ff {{MR|0921081}} {{ZBL|0621.00005}} </TD></TR><TR><TD valign="top">[a24]</TD> <TD valign="top"> I.P. Natanson, "Constructive theory of functions" , '''1–2''' , F. Ungar (1964–1965) (Translated from Russian) {{MR|0702625}} {{MR|0201880}} {{MR|0201879}} {{MR|0201878}} {{MR|0034464}} {{ZBL|0599.41024}} {{ZBL|0573.41025}} </TD></TR></table>

Latest revision as of 01:58, 17 June 2022


One of the interpolation problems in the real or complex domain.

The first precise formulation of the original version of the moment problem in the real domain is due to T.J. Stieltjes (1894). He proposed and solved the following problem in connection with the study of continued fractions (cf. Continued fraction): Given a sequence of real numbers $ \{ \mu _ {n} \} $, $ n = 0 , 1, \dots $ determine a bounded and non-decreasing function $ \psi ( x) $ on $ [ 0 , + \infty ) $ such that

$$ \tag{1 } \int\limits _ { 0 } ^ \infty x ^ {n} d \psi = \mu _ {n} ,\ \ n = 0 , 1 , \dots $$

As in every interpolation problem, the solution of (1) consists of two parts.

Problem A.

Let $ \mathfrak M $ be the set of all sequences of real numbers $ \{ \mu _ {n} \} $ for which the infinite system of equations (1) has at least one solution $ \psi $ with the above properties; determine necessary and sufficient (constructive) conditions which must be satisfied by the numbers $ \mu _ {n} $, $ n = 0 , 1 \dots $ in order that $ \{ \mu _ {n} \} \in \mathfrak M $.

Problem B.

Determine the set of all solutions in the class of bounded non-decreasing functions $ \psi $ on $ [ 0 , + \infty ) $ satisfying the infinite system (1) for given $ \mu _ {n} $, $ n = 0 , 1 \dots $ $ \{ \mu _ {n} \} \in \mathfrak M $.

The left-hand sides of (1) were called "momentmoments" by Stieltjes. He borrowed the terminology from mechanics. If $ d \psi ( x) $ is interpreted as the mass on $ [ x , x + dx ] $, then the integral $ \int _ {0} ^ {X} d \psi ( t) $ is the mass on $ [ 0 , X ] $. The integrals (1) for $ n = 1 $ and $ n = 2 $ are then, respectively, the first (static) and second (inertial) moments with respect to the origin $ x = 0 $ of the total mass $ \int _ {0} ^ \infty d \psi ( x) $ (this corresponds to $ n = 0 $ in (1)) on $ [ 0 , \infty ) $. Generalizing this idea, Stieltjes called the integral

$$ \int\limits _ { 0 } ^ \infty x ^ {n} d \psi ( x) $$

the moment of order $ n $ (relative to $ x = 0 $) of the given mass $ \int _ {0} ^ \infty d \psi ( x) $ with $ \psi $ as distribution on $ [ 0 , + \infty ) $.

Stieltjes related the solution of the moment problem in the following way to the "natural" continued fraction associated with the integral

$$ \tag{2 } I ( z , \psi ) = \ \int\limits _ { 0 } ^ \infty \frac{d \psi ( x) }{z + x } \sim \frac{\mu _ {0} }{z} - \frac{\mu _ {1} }{z ^ {2} } + \frac{\mu _ {2} }{z ^ {3} } - \frac{\mu _ {3} }{z ^ {4} } + \dots , $$

more precisely, to the formal series

$$ \sum _ { n= 0} ^ \infty ( - 1 ) ^ {n} \frac{\mu _ {n} }{z ^ {n+ 1} } . $$

Corresponding to the integral $ I ( z , \psi ) $ there is a continued fraction:

$$ \tag{3 } I ( z , \psi ) \sim \ \frac{1 \mid }{\mid a _ {1} z } + \frac{1 \mid }{\mid a _ {2} } + \frac{1 \mid }{\mid a _ {3} z } + \frac{1 \mid }{\mid a _ {4} } + \dots , $$

and also a "closely related" continued fraction

$$ \tag{4 } I ( z , \psi ) \sim \ \frac{\lambda _ {1} \mid }{\mid z + c _ {1} } - \frac{\lambda _ {2} \mid }{\mid z + c _ {2} } - \frac{\lambda _ {3} \mid }{\mid z + c _ {3} } - \dots . $$

The continued fraction (4) is obtained from (3) by "reductions" of the form

$$ z - \frac{\alpha \mid }{\mid 1 } - \frac{\beta \mid }{\mid z - \gamma } = z - \alpha - \frac{\alpha \beta }{z - ( \beta + \gamma ) } . $$

Making use of the theory of continued fractions, Stieltjes proved that in a certain sense a necessary and sufficient condition for the solvability of (1) (which is equivalent to $ \{ \mu _ {n} \} \in \mathfrak M $) is the positivity of all $ a _ {n} $ in (3), which, in turn, is a consequence of the positivity of $ \lambda _ {n} $ and $ c _ {n} $ in (4). In terms of $ \mu _ {n} $ these conditions are equivalent to the positivity of the determinants

$$ \Delta = \ \mathop{\rm det} \| \mu _ {i+ j} \| _ {i , j = 0 } ^ {n} $$

and

$$ \Delta _ {n} ^ {( 1)} = \ \mathop{\rm det} \| \mu _ {i + j + 1 } \| _ {i , j = 0 } ^ {n} . $$

The moment problem (1) is called well-posed or determined for a given sequence $ \{ \mu _ {n} \} $, $ \{ \mu _ {n} \} \in \mathfrak M $, if the system (1) has a unique solution $ \psi $. On the other hand, it has been shown that if the system (1) has more than one solution for a given $ \mu _ {n} $, $ \{ \mu _ {n} \} \in \mathfrak M $, then it has an infinite number of solutions.

Example: the two functions

$$ \psi _ {1} ( x) = \ \int\limits _ { 0 } ^ { x } t ^ {- \mathop{\rm ln} t } d t $$

and

$$ \psi _ {2} ( x) = \ \int\limits _ { 0 } ^ { x } t ^ {- \mathop{\rm ln} t } [ 1 - \theta \sin ( \pi \mathop{\rm ln} t ) ] d t ,\ \ \theta \in [ 0 , 1 ] , $$

have the same moments

$$ \int\limits _ { 0 } ^ \infty x ^ {n} d \psi _ {1} ( x) = \ \int\limits _ { 0 } ^ \infty x ^ {n} d \psi _ {2} ( x) $$

for all $ n = 0 , 1 ,\dots $.

Stieltjes effectively constructed certain solutions of (1), which, of course, all coincide in a well-known sense if (1) is well-posed. When the moment problem (1) is ill-posed or undetermined, the Stieltjes solutions have a number of extremal properties. Stieltjes subsequently showed that (1) is well-posed or ill-posed depending on the convergence or divergence of the continued fraction (3) (which is equivalent to the divergence or convergence of the series $ \sum _ {n= 0} ^ \infty a _ {n} $). Here the fraction (3) may be convergent to $ I ( z , \psi ) $, whereas the series

$$ \sum _ { n= 0} ^ \infty \frac{( - 1 ) ^ {n} \mu _ {n} }{z ^ {n+ 1} } $$

may, at the same time, diverge for all $ z \in \mathbf C $.

Preceding the work of Stieltjes , the moment problem in the real domain was considered in a less general and less precise formulation; such as, for example, in a series of papers by P.L. Chebyshev [2] and A.A. Markov [3]. They mainly investigated the following problem: Give a description of the properties of a class $ U $ of functions defined on $ ( - \infty , + \infty ) $ such that the relations

$$ p ( x) \in U $$

and

$$ \tag{5 } \int\limits _ {- \infty } ^ { {+ } \infty } x ^ {n} p ( x) d x = \ \int\limits _ {- \infty } ^ { {+ } \infty } x ^ {n } e ^ {- x ^ {2} } d x ,\ n = 0 , 1 \dots $$

lead to the identity

$$ p ( x) = e ^ {- x ^ {2} } . $$

In other words, the question here concerns a maximally complete and constructive characterization of the uniqueness class $ U $ of the interpolation problem (5). The solution of the moment problem (5) plays a major role in probability theory and mathematical statistics. Also of major significance are the polynomials $ \omega _ {n} ( x) $, the dominators of the successive approximations (that is, the approximants) of the continued fraction (4). The study of the properties of the polynomials $ \{ \omega _ {n} ( x) \} $ later initiated a broad field of research into the theory of orthogonal polynomials.

H. Hamburger (1920) generalized the moment problem (1) to the case of the whole real line $ \mathbf R = ( - \infty , + \infty ) $. Here the consideration of negative values of $ x $ introduced a number of peculiarities and was non-trivial. Hamburger, making essential use of Helly's selection principle (cf. Helly theorem), aimed at obtaining necessary and sufficient conditions for the solvability of the system

$$ \tag{6 } \int\limits _ {- \infty } ^ { {+ } \infty } x ^ {n} d \psi ( x) = \mu _ {n} ,\ \ n = 0 , 1 \dots $$

thereby completely solving the problem of convergence of the continued fractions (3) and (4) generated by (6). The union of problems $ A $ and $ B $ in relation to (6) is called the moment problem of equation (6). Hamburger obtained a criterion for the existence of a unique solution of the moment problem for (6). In this connection, the moment problem for (6) may be ill-posed, whereas at the same time the corresponding moment problem (1) (with the same $ \mu _ {n} $) may be well-posed (have a unique solution). R. Nevanlinna (1922) gave a solution to the moment problem (6) using the integrals

$$ I ( z , \psi ) = \ \int\limits _ {- \infty } ^ { {+ } \infty } \frac{d \psi ( x) }{z - x } ,\ \ x \in \mathbf C \setminus \mathbf R , $$

and studied properties of these solutions. He made an important observation about the so-called "extremal solution" of the moment problem (6).

M. Riesz (1921) obtained solutions of the moment problem (6) based on the theory of quasi-orthogonal polynomials. These consist of linear combinations of the form $ A _ {n} \omega _ {n} ( x) + A _ {n- 1} \omega _ {n- 1} ( x) $, where $ A _ {k} $ are constants and $ \omega _ {k} ( x) $ is the dominator of the $ k $-th approximant of the continued fraction (4) associated with (6). He observed a close connection between the solutions of the moment problem (6) and the validity of Parseval's formula for the system of orthogonal polynomials $ \{ \omega _ {k} ( x) \} $. T. Carleman (1923–1926) established connections between the moment problem (6), the theory of quasi-analytic functions and the theory of quadratic forms in a countable set of variables. He also obtained the most general criterion for the well-posedness of the moment problem (6). F. Hausdorff (1923) obtained a criterion for the solvability of the moment problem (6) $ ( \iff \{ \mu _ {n} \} \in \mathfrak M ) $ under the condition that the function $ \psi ( x) $ in (6) is a constant outside a given interval. He effectively constructed the solution $ \psi ( x) $ of (6) (which, under the assumption given above, is always unique); this provides an opportunity to obtain criteria for additional properties of solutions $ \psi ( x) $ of (6) (continuity, differentiability, etc.). Carleman and subsequently M.H. Stone (1932) fully investigated (6) based on results in the theory of Jacobi quadratic forms and the theory of singular integral equations. E.K. Haviland (1935) and H. Cramér (1937) extended Riesz's theory of (6) to the multi-dimensional case.

Numerous different generalizations of the moment problem have also been considered. Mainly these are variants (or a combination of variants) of the following two themes.

Replacement of the powers $ x ^ {n} $ in the integrals (6) by "moment" sequences of functions $ \{ \phi _ {n} ( x) \} $ of another form, and replacement of the left-hand sides of (6) by other kinds of integrals (for example, the case when $ d \psi ( x) $ is replaced by $ \phi ( x) d x $, where $ \phi ( x) \in L _ {p} $, $ p \geq 1 $, has been studied) or even by operators acting in abstract spaces.

Thus, with respect to the first theme, one has the so-called trigonometric moment problem, which is the following: Given an infinite sequence of numbers $ \{ c _ {n} \} _ {n = - \infty } ^ \infty $, determine a function $ \psi ( x) $, non-decreasing on $ [ - \pi , \pi ] $, satisfying

$$ \tag{7 } \frac{1}{2 \pi } \int\limits _ {- \pi } ^ \pi e ^ {inx} d \psi ( x) = c _ {n} ,\ \ n = 0 , \pm 1 \dots $$

that is, solve problems $ A $ and $ B $ for the system (7).

Precise formulations of certain results concerning the theory of moment problems in the real domain are given below. Let $ \mathbf R ^ {n} $ be the $ n $-dimensional Euclidean space. A set function $ \Phi ( e) $, defined on the family $ {\mathcal B} $ of all Borel sets in $ \mathbf R ^ {n} $, is called a distribution if $ \Phi ( e) \geq 0 $ for all $ e \in {\mathcal B} $ and if

$$ \sum _ { i= 1} ^ \infty \Phi ( e _ {i} ) = \Phi \left ( \sum _ { i= 1} ^ \infty e _ {i} \right ) $$

whenever $ e _ {i} \cap e _ {j} = \emptyset $, $ i \neq j $, where $ e _ {i} \in {\mathcal B} $ for all $ i , j = 1 , 2 , \dots $.

The spectrum $ \sigma ( \Phi ) $ of a distribution $ \Phi $ is the set of all points $ x = ( x _ {1}, \dots, x _ {n} ) \in \mathbf R ^ {n} $ such that $ \Phi ( G) > 0 $ for an arbitrary open set $ G \subset \mathbf R ^ {n} $ containing $ x $. Let

$$ \tag{8 } \{ \mu _ {i _ {1} \dots i _ {n} } \} ,\ \ i _ {1} \dots i _ {n} = 0 , 1 \dots $$

be an $ n $-fold infinite sequence of real numbers. The question is: What are necessary and sufficient conditions to be satisfied by the numbers (8) in order that there is a distribution $ \Phi $, with spectrum $ \sigma ( \Phi ) $ contained in a given closed set $ F $, which is a solution of the system

$$ \tag{9 } \int\limits _ {\mathbf R ^ {n} } t _ {1} ^ {i _ {1} } \dots t _ {n} ^ {i _ {n} } d \Phi = \mu _ {i _ {1} \dots i _ {n} } ,\ \ i _ {1} \dots i _ {n} = 0 , 1 ,\dots $$

(problem $ A $ for (9)). Problem $ B $ for (9) is formulated similarly. The union of problems $ A $ and $ B $ for (9) is called the $ F $-moment problem. The $ F $-moment problem is well-posed if its solution is in some way unique. Otherwise the $ F $-moment problem (9) is called ill-posed.

Theorem.

A necessary and sufficient condition that the $ F $-moment problem (9) has a solution in $ \mathbf R ^ {2} $ is that the condition

$$ \sum a _ {i} b _ {j} \mu _ {ij} \geq 0 $$

holds for any polynomial

$$ P ( u , v ) = \sum a _ {i} b _ {j} u ^ {i} v ^ {j} $$

taking non-negative values for all $ ( u , v ) \in F $.

This theorem is the basis for obtaining solvability conditions (that is, for the solution of problem $ A $) for different versions of (9). Here are some of them.

Theorem 1.

In order that the moment problem (6) (with $ F = \mathbf R $) have a solution it is necessary that

$$ \Delta _ {n} = \mathop{\rm det} \| \mu _ {i+ j }\| _ {i,j= 0} ^ {n} \geq 0 ,\ \ n = 0 , 1 ,\dots . $$

For the existence of a solution to the moment problem (6) having a spectrum which is not a finite number of points, it is necessary and sufficient that

$$ \Delta _ {n} > 0 ,\ \ n = 0 , 1 ,\dots . $$

For the existence of a solution to the moment problem (6) having a spectrum consisting of precisely $ k + 1 $ different points, it is necessary and sufficient that

$$ \Delta _ {0} \dots \Delta _ {k} > 0 ,\ \ \Delta _ {k+ 1} = \Delta _ {k+ 2} = \dots = 0 . $$

In the latter case the moment problem (6) is always well-posed.

Theorem 2.

In order that the moment problem (1) (with $ F = [ 0 , \infty ) $) is solvable it is necessary that

$$ \Delta _ {n} = \mathop{\rm det} \| \mu _ {i+ j} \| _ {i,j= 0} ^ {n} \geq 0 $$

and

$$ \Delta _ {n} ^ {( 1)} = \ \mathop{\rm det} \| \mu _ {i+ j+ 1} \| _ {i,j= 0} ^ {n} \geq 0 ,\ \ n = 0 , 1 ,\dots . $$

For the existence of a solution to the moment problem (1) having a spectrum which is not a finite number of points, it is necessary and sufficient that

$$ \Delta _ {n} > 0 \ \textrm{ and } \ \ \Delta _ {n} ^ {( 1)} > 0 ,\ \ n = 0 , 1 ,\dots . $$

Necessary and sufficient conditions have also been obtained for the existence of a solution to the moment problem (1) having a spectrum $ \sigma ( \Phi ) $ consisting of precisely $ k + 1 $ points different from $ x = 0 $. The conditions are similar to those given in the final part of Theorem 1.

Theorem 3.

A necessary and sufficient condition that the Hausdorff moment problem in $ \mathbf R $,

$$ \int\limits _ { 0 } ^ { 1 } x ^ {n} d \Phi = \mu _ {n} ,\ \ n = 0 , 1 \dots \ \ F = [ 0 , 1 ] , $$

has a solution, is that $ \Delta ^ {k} \mu _ {v} \geq 0 $ for all $ k , v = 0 , 1 ,\dots $ (here $ \Delta ^ {k} $ denotes the $ k $-th difference operator).

Theorem 4.

A necessary and sufficient condition that the Hausdorff moment problem in $ \mathbf R ^ {2} $,

$$ \int\limits _ { 0 } ^ { 1 } \int\limits _ { 0 } ^ { 1 } u ^ {i} v ^ {j} d \Phi = \mu _ {ij} ,\ \ i , j = 0 , 1 \dots \ \ F = [ 0 , 1 ] \times [ 0 , 1 ] , $$

has a solution, is that

$$ \Delta _ {1} ^ {n} \Delta _ {2} ^ {m} \mu _ {ij} \geq 0 ,\ \ n , m , i , j = 0 , 1 ,\dots . $$

Theorem 5.

The moment problem (6) is well-posed if

$$ \tag{10 } \sum _ { n= 0} ^ \infty \frac{1}{\mu _ {2n} ^ {1/2n} } = + \infty . $$

Necessary and sufficient conditions are known (see, for example, [4]) which must be satisfied by $ \mu _ {n} $ in order that the moment problem (6) (the moment problem (1)) be well-posed; however, these conditions are less simple than the sufficient condition (10) and their formulation is somewhat cumbersome.

The moment problem in the complex domain is the name of a wide class of interpolation problems described as follows. Let $ D $ be an open simply-connected domain in the complex plane $ \mathbf C $, $ \infty \notin D $; let $ A ( D) $ be the space of analytic functions in $ D $ with topology defined by uniform convergence on arbitrary compact sets $ K \subset D $; let $ A ^ {*} ( D) $ be the space of all functions $ \gamma ( z) $ analytic in a neighbourhood $ V ^ \infty = V ^ \infty ( \gamma ) $ of the point at infinity for which $ \gamma ( \infty ) = 0 $ and $ \supp \gamma \subset D $ (the latter is another way of saying that the set of singularities of $ \gamma \in A ^ {*} ( D) $ lies in $ D $). The topology in $ A ^ {*} ( D) $ is defined by uniform convergence on one of the curves of the family of simple closed Jordan curves $ \{ \Gamma _ \alpha \} \subset D $ having the property: For any compact set $ K \subset D $ there is a $ \Gamma _ {\alpha _ {0} } = \Gamma _ {\alpha _ {0} } ( K) \in \{ \Gamma _ \alpha \} $ such that $ K \subset \mathop{\rm int} \Gamma _ {\alpha _ {0} } ( D) $ (here $ \mathop{\rm int} \Gamma _ \alpha $ denotes the open simply-connected domain with boundary $ \Gamma _ {\alpha _ {0} } $ lying inside $ \Gamma _ {\alpha _ {0} } $). It is well known that the spaces $ A ( D) $ and $ A ^ {*} ( D) $ are dual.

The moment problem in a complex domain is as follows. Given an integer $ p > 1 $, functions $ 0 \not\equiv A _ {s} ( z) \in A ( D) $, $ s = 0, \dots, p - 1 $, a univalent function $ W ( z) \in A ( D) $, and a set of $ p $ sequences of complex numbers

$$ \alpha _ {p} = \{ \{ a _ {ns} \} :\ n = 0 , 1 ,\dots; s = 0 \dots p - 1 \} , $$

can one find a function $ \gamma ( z) \in A ^ {*} ( D) $ for which

$$ \tag{11 } \frac{1}{2 \pi } \int\limits _ \Gamma [ W ( z) ] ^ {np} A _ {s} ( z) \gamma ( z) d z = a _ {ns} , $$

$$ n = 0 , 1 ,\dots; \ s = 0, \dots, p - 1 , $$

where

$$ \supp \gamma \subset \mathop{\rm int} \Gamma \subset \Gamma \subset D ? $$

In general, it is not true for every given collection $ \alpha _ {p} $ that the infinite system (11) has at least one solution $ \gamma ( z) \in A ^ {*} ( D) $. Therefore a collection $ \alpha _ {p} $ is called $ D $-admissible if there is (at least one) $ \gamma ( z) \in A ^ {*} ( D) $ satisfying (11).

Problem A.

Determine necessary and sufficient conditions (of a constructive nature) for the $ D $-admissibility of a collection $ \alpha _ {p} $.

Problem B.

Let $ \alpha _ {p} $ be $ D $-admissible. The question is: How can one determine the complete set of functions $ \gamma ( z) \in A ^ {*} ( D) $ satisfying (11) with respect to given numbers $ a _ {ns} $ in the right-hand side of (11)?

The union of problems $ A $ and $ B $ is called a moment problem in the complex domain. Problem $ B $, for the case $ p = 1 $ and $ A _ {0} ( z) = 1 $, was first treated in 1937 by A.O. Gel'fond [6]; he discussed whether, in principle, problem $ B $ can be solved (for $ p = 1 $ and $ A _ {0} ( z) = 1 $ the system (11) always has a unique solution for $ D $-admissible right-hand sides $ a _ {ns} $). Numerous special cases of problems $ A $ and $ B $ have been investigated (see [7][10]). Using tools from the theory of boundary value problems allows one to attain (see [11][14]) a fairly complete investigation of the moment problem in the complex domain.

A domain $ G \subset \mathbf C $ is called $ 2 \pi / p $-invariant, $ G \in \mathop{\rm Inv} ( 2 \pi / p ) $, if $ \mathop{\rm exp} ( 2 \pi i / p) G \equiv G $.

An exhaustive solution to the moment problem in a complex domain $ D $ under natural assumptions concerning the functions $ A _ {s} ( z) $, $ s = 0 \dots p - 1 $, has been given in [10], when $ W ( D) = G \in \mathop{\rm Inv} ( 2 \pi / p ) $, as well as for a domain whose image $ W ( D) $ can be imbedded in some domain $ G \in \mathop{\rm Inv} ( 2 \pi / p ) $. The theory of boundary value problems can be fruitfully used to obtain a complete solution by quadrature of problem $ B $ for domains of the types indicated. In particular, for $ p = 1 $ every domain $ G $ belongs to the class $ \mathop{\rm Inv} ( 2 \pi / p ) $. Thus necessary and sufficient conditions for the uniqueness of the solution of the system (11) have been found for domains $ D $ whose $ W $-images cannot be imbedded. These domains are important in applications. Here there are two essentially different cases: $ 0 \in W ( D) $ and $ 0 \notin W ( D) $ (in the latter, the question of the uniqueness of the solution to (11) has been exhaustively studied on the assumption that $ n = 0 , \pm 1 ,\dots $). Several versions of the moment problem (11) are possible with regard to the behaviour of the corresponding functions on $ \Gamma $.

A number of well known interpolation problems reduce to the moment problem in the complex domain by means of the Borel transformation and its generalizations (see Comparison function and Borel transform), for example:

$$ F ^ { ( n) } ( h n ) = a _ {n} ; \ \ F ^ { ( n) } ( \omega ^ {n} ) = a _ {n} ; $$

$$ F ( \omega ^ {n} ) = a _ {n} ; \ \Delta ^ {n} F ( h n ) = a _ {n} ; $$

$$ F ^ { ( n p + l _ {s} ) } ( \alpha _ {s} ) = a _ {ns} ; $$

$$ n = 0 , 1, \dots \ s = 0, \dots, p - 1 ,\ l _ {s} = 0 , 1 ; $$

$$ \Delta ^ {2 n + l _ {s} } F ( \alpha _ {s} + 2 h n ) = a _ {ns} ,\ s = 0 , 1 ; \ l _ {s} = 0 , 1 ; \ n = 0 , 1 ,\dots . $$

In addition, many theorems on integer-valued functions reduce to very specific cases of problem $ A $.

References

[1a] T.J. Stieltjes, "Recherches sur les fractions continues" Ann. Fac. Sci. Univ. Toulouse , 8 (1894) pp. 1–122 MR1508159 Zbl 25.0326.01
[1b] T.J. Stieltjes, "Recherches sur les fractions continues" Ann. Fac. Sci. Univ. Toulouse , 9 (1895) pp. 1–47 MR1508160 Zbl 0861.01036 Zbl 0861.01037 Zbl 0838.01036 Zbl 0862.01038 Zbl 35.0978.01 Zbl 25.0326.01
[2] P.L. Chebyshev, "Oeuvres de P.L. Tchebycheff" , 1–2 , Chelsea (1961) (Translated from Russian)
[3] A.A. Markov, "Selected work on the theory of continued fractions and the theory of functions deviating least from zero" , Moscow-Leningrad (1948) (In Russian)
[4] J.A. Shohat, J.D. Tamarkin, "The problem of moments" , Amer. Math. Soc. (1950) MR0008438 Zbl 0041.43302
[5] N.I. Akhiezer, "The classical moment problem and related questions in analysis" , Hafner (1965) (Translated from Russian) MR0184042 Zbl 0135.33803
[6] A.O. [A.O. Gel'fond] Gelfond, "Differenzenrechnung" , Deutsch. Verlag Wissenschaft. (1958) (Translated from Russian) MR0094608 Zbl 0080.07601
[7] R.C. Buck, "Interpolation series" Trans. Amer. Math. Soc. , 64 (1948) pp. 283–298 MR0029985 Zbl 0033.36401
[8] R.C. Buck, "Integral valued entire functions" Duke Math. J. , 15 (1948) pp. 879–891 MR0029984 Zbl 0033.36402
[9] R.C. Buck, "On admissibility of sequences and a theorem of Pólya" Comment. Mat. Helv. , 27 (1953) pp. 75–80 MR0054706 Zbl 0050.08103
[10] I.F. Lokhin, "An interpolation problem for entire functions" Mat. Sb. , 35 : 2 (1954) pp. 223–230 (In Russian)
[11] Yu.A. Kaz'min, "On a general problem in the theory of interpolation" Soviet Math. Dokl. , 11 (1970) pp. 1357–1361 Dokl. Akad. Nauk SSSR , 194 : 6 (1970) pp. 1251–1254 Zbl 0215.42202
[12] Yu.A. Kaz'min, "On the moment problem in the complex domain" Soviet Math. Dokl. , 13 (1972) pp. 833–837 Dokl. Akad. Nauk SSSR , 204 : 6 (1972) pp. 1309–1312 Zbl 0261.30022
[13] Yu.A. Kaz'min, "The general moment problem in the complex domain. Uniqueness theorems" Soviet Math. Dokl. , 13 (1972) pp. 868–872 Dokl. Akad. Nauk SSSR , 205 : 1 (1972) pp. 19–22 Zbl 0261.30023
[14] L. Bieberbach, "Analytische Fortsetzung" , Springer (1955) MR0068621 Zbl 0064.06902
[15] F.D. Gakhov, "Boundary value problems" , Pergamon (1966) (Translated from Russian) MR0198152 Zbl 0141.08001
[16] M.G. Krein, A.A. Nudel'man, "The Markov moment problem and extremal problems" , Amer. Math. Soc. (1977) (Translated from Russian) MR0458081 Zbl 0361.42014

Comments

The classical moment problem is connected with a large number of fundamental theoretical and applied topics, including function theory, spectral decomposition of operators, positive definiteness, probability, approximation theory, electrical and mechanical inverse problems, prediction of stochastic processes, and the design of algorithms for signal-processing VLSI chips. A survey of some of these ramifications is given in [a23].

As is obvious from the main article above, there is an intimate connection between moment problems and continued fractions; from there it is but a very small step to the field of rational approximation and interpolation, viz. Padé and Hermite–Padé approximation (cf., e.g., Padé approximation).

The vast literature on the last mentioned subject contains many papers connected with and having effect on several types of moment problems, cf. contributions in [a3][a12]; also, applications in physics should be mentioned, see [a13][a15].

Moreover, in the last 15 years the study of different types of extensions of the moment problem in the setting of the theory of continued fractions and linear analysis has intensified; cf. [a16][a20].

Finally, [a1]– are important from a historical point of view.

References

[a1] J. Grommer, "Ganze transzendente Funktionen mit lauter reellen Nullstellen" J. Reine Angew. Math. , 144 (1914) pp. 212–238 Zbl 45.0650.03 Zbl 45.0650.02
[a2a] H. Hamburger, "Ueber eine Erweiterung des Stieltjesschen Momentenproblems I" Math. Ann. , 81 (1920) pp. 235–319
[a2b] H. Hamburger, "Ueber eine Erweiterung des Stieltjesschen Momentenproblems II" Math. Ann. , 82 (1921) pp. 120–164
[a2c] H. Hamburger, "Ueber eine Erweiterung des Stieltjesschen Momentenproblems III" Math. Ann. , 82 (1921) pp. 168–187
[a3] P.R. Graves (ed.) , Padé approximants and their application (Canterbury, 1972) , Acad. Press (1973)
[a4] E.B. Saff (ed.) R.S. Varga (ed.) , Padé and Rational Approximation (Tampa, 1976) , Acad. Press (1977) MR458010
[a5] L. Wuytack (ed.) , Padé approximation and its applications (Antwerp, 1979) , Lect. notes in math. , 765 , Springer (1979) MR561441
[a6] M.G. de Bruin (ed.) H. van Rossum (ed.) , Padé approximation and its applications (Amsterdam, 1980) , Lect. notes in math. , 888 , Springer (1981)
[a7] J. Gilewicz (ed.) , Proc. 1-st French-Polish Meeting on Padé Approximation and Convergence Acceleration Techniques (Warszaw, 1981) , CPT-81/PE 1354 , CNRS (1982)
[a8] H. Werner (ed.) H.-J. Bünger (ed.) , Padé approximation and its application (Bad Honnef, 1983) , Lect. notes in math. , 1071 , Springer (1984)
[a9] P.R. Graves-Morris (ed.) E.B. Saff (ed.) R.S. Varga (ed.) , Rational Approximation and Interpolation (Tampa, 1983) , Lect. notes in math. , 1105 , Springer (1984)
[a10] C. Brezinski (ed.) A. Draux (ed.) A.P. Magnus (ed.) P. Maroni (ed.) A. Ronveaux (ed.) , Polynômes Orthogonaux et Applications (Bar-le-Duc, 1984) , Lect. notes in math. , 1171 , Springer (1985)
[a11] J. Gilewicz (ed.) M. Pindor (ed.) W. Siemasko (ed.) , Rational Approximation and its Application in Mathematics and Physics (Lańcut, 1985) , Lect. notes in math. , 1237 , Springer (1987)
[a12] A. Cuyt (ed.) , Nonlinear numerical methods and rational approximation (Antwerp, 1987) , Reidel (1988) MR1005348
[a13] J. Antolin, A. Cruz, J. Phys. , G12 (1986) pp. 297
[a14] C.T. Corcoran, P.W. Langhoff, "Moment-theory approximations for nonnegative spectral densities" J. Math. Phys. , 18 (1977) pp. 651–657 MR0437991
[a15] P.W. Langhoff, B.J. Dalton (ed.) et al. (ed.) , Moment methods in many Fermion systems , Plenum (Forthcoming)
[a16] W.B. Jones, W.J. Thron, H. Waadeland, "A strong Stieltjes moment problem" Trans. Amer. Math. Soc. , 261 (1980) pp. 503–528 MR0580900 Zbl 0449.30004
[a17] W.J. Thron, "Survey of continued fraction methods in solving moment problems and related topics" W.B. Jones (ed.) W.J. Thron (ed.) E.H. Waadeland (ed.) , Analytic theory of continued fractions , Lect. notes in math. , 932 , Springer (1982) pp. 4–36 MR690451
[a18] W.B. Jones, W.J. Thron, O. Njastad, "Orthogonal Laurent polynomials and the strong Hamburger moment problem" J. Math. Anal. Applic. , 98 (1984) pp. 528–554 MR0730525 Zbl 0535.44006
[a19] W.B. Jones, O. Njastad, W.J. Thron, "Continued fractions associated with the trigonometric and other strong moment problems" (To appear)
[a20] W.B. Jones, O. Njastad, W.J. Thron, "Perron–Carathéodory continued fractions" (To appear)
[a21] N.I. Akhiezer, M. Krein, "Some questions in the theory of moments" , Amer. Math. Soc. (1962) (Translated from Russian) MR167806 Zbl 0117.32702
[a22] H.J. Landau, "The classical moment problem: Hilbertian proofs" J. Funct. Anal. , 38 (1980) pp. 255–272 MR0587909 Zbl 0446.44006
[a23] H.J. Landau (ed.) , Moments in mathematics , Amer. Math. Soc. (1987) pp. 56ff MR0921081 Zbl 0621.00005
[a24] I.P. Natanson, "Constructive theory of functions" , 1–2 , F. Ungar (1964–1965) (Translated from Russian) MR0702625 MR0201880 MR0201879 MR0201878 MR0034464 Zbl 0599.41024 Zbl 0573.41025
How to Cite This Entry:
Moment problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Moment_problem&oldid=14955
This article was adapted from an original article by Yu.A. Kaz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article