From Encyclopedia of Mathematics
Revision as of 17:15, 7 February 2011 by (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

A numerical characteristic of various mathematical objects. Usually the value of a modulus is a non-negative real number, an element of , having certain characteristic properties, conditioned by properties of the set of objects under discussion. The notion of a modulus figures in various branches of mathematics, although sometimes under other names — absolute value; norm, etc. All of them, in essence, are generalizations of the idea of the absolute value of a real or complex number (but the term modulus usually means a generalization of special form). Here the function turns out to be a morphism of some structure in onto one of the (algebraic) structures in , among which the most important ones are the order, the addition and the multiplication. In this connection the basic properties of the absolute value must be preserved (see below: )–)). In more abstract situations it is natural to use an ordered semi-ring instead of (this conception of a modulus is satisfied by, for example, a measure, a capacity, a mass, etc.). Finally, the term modulus denotes numerical characteristics of other objects, such as, for example, the moduli of a plane domain, the modulus of an annulus, the moduli of a Riemann surface, and the modulus of continuity or smoothness (cf. Continuity, modulus of; Smoothness, modulus of) (and even moduli in the theory of elasticity (compression, shear)). However, in all these cases it is possible to introduce a value functionally depending on the modulus and more adequately reflecting the nature of the objects under discussion (for example, for a family of curves, the extremal length instead of the modulus).

Examples. 1) The modulus of an element of a semi-ordered space is the number

where () is the positive (negative) part of . Here, as for real numbers,

) ; ;

) (0 is the zero in ).

2) The modulus of an element of a separable pre-Hilbert space , in particular, a finite-dimensional vector space, is the number

where is the inner product in . This is a norm in and thus

) ;

) , a scalar.

3) The modulus of an element of a locally compact skew-field is the number

where is a Haar measure on the additive group of and is a measurable subset. Here, as for numbers from , , ,

) .

A generalization of this idea is the modulus of an automorphism.

4) The modulus of an endomorphism of a vector space over a field (a special case is the modulus of an automorphism) is the number , which turns out to be simply equal to , where is the modulus of Example 3).


Often a modulus is simply some numerical parameter on which the mathematical object under consideration depends. For instance, the modulus of an elliptic integral, the complementary modulus (in Jacobi elliptic functions) or the modulus of a congruence. Cf. also Norm on a field; Valuation.

How to Cite This Entry:
Modulus. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article