Mittag-Leffler function

From Encyclopedia of Mathematics
Revision as of 17:16, 7 February 2011 by (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

An entire function of a complex variable , introduced by G. Mittag-Leffler [1] as a generalization of the exponential function:

Since the Mittag-Leffler function and the more general functions of Mittag-Leffler type

are widely used in integral representations and transforms of analytic functions, their properties, in particular asymptotic properties, have been studied in great detail (see [2], [3]).


[1] G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène" Acta Math. , 29 (1905) pp. 101–181
[2] M.M. Dzhrbashyan, "Integral transforms and representation of functions in the complex domain" , Moscow (1966) (In Russian)
[3] A.A. Gol'dberg, I.V. Ostrovskii, "Value distribution of meromorphic functions" , Moscow (1970) (In Russian)



[a1] M.L. Cartwright, "Integral functions" , Cambridge Univ. Press (1962)
How to Cite This Entry:
Mittag-Leffler function. Encyclopedia of Mathematics. URL:
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article