Namespaces
Variants
Actions

Difference between revisions of "Mittag-Leffler function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
An entire function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064140/m0641401.png" /> of a complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064140/m0641402.png" />, introduced by G. Mittag-Leffler [[#References|[1]]] as a generalization of the exponential function:
+
<!--
 +
m0641401.png
 +
$#A+1 = 4 n = 0
 +
$#C+1 = 4 : ~/encyclopedia/old_files/data/M064/M.0604140 Mittag\AAnLeffler function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064140/m0641403.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
An entire function  $  E _  \rho  ( z) $
 +
of a complex variable  $  z $,
 +
introduced by G. Mittag-Leffler [[#References|[1]]] as a generalization of the exponential function:
 +
 
 +
$$
 +
E _  \rho  ( z)  = \sum _ { k= } 0 ^  \infty 
 +
 
 +
\frac{z  ^ {k} }{\Gamma ( 1 + k / \rho ) }
 +
,\ \
 +
1 \leq  \rho < \infty .
 +
$$
  
 
Since the Mittag-Leffler function and the more general functions of Mittag-Leffler type
 
Since the Mittag-Leffler function and the more general functions of Mittag-Leffler type
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064140/m0641404.png" /></td> </tr></table>
+
$$
 +
E _  \rho  ( z ; \mu )  = \sum _ { k= } 0 ^  \infty 
 +
 
 +
\frac{z  ^ {k} }{\Gamma ( \mu + k / \rho ) }
 +
,\ \
 +
\mu , \rho \in \mathbf C ,
 +
$$
  
 
are widely used in integral representations and transforms of analytic functions, their properties, in particular asymptotic properties, have been studied in great detail (see [[#References|[2]]], [[#References|[3]]]).
 
are widely used in integral representations and transforms of analytic functions, their properties, in particular asymptotic properties, have been studied in great detail (see [[#References|[2]]], [[#References|[3]]]).
Line 11: Line 37:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G. Mittag-Leffler,  "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène"  ''Acta Math.'' , '''29'''  (1905)  pp. 101–181</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M.M. Dzhrbashyan,  "Integral transforms and representation of functions in the complex domain" , Moscow  (1966)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.A. Gol'dberg,  I.V. Ostrovskii,  "Value distribution of meromorphic functions" , Moscow  (1970)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G. Mittag-Leffler,  "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène"  ''Acta Math.'' , '''29'''  (1905)  pp. 101–181</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M.M. Dzhrbashyan,  "Integral transforms and representation of functions in the complex domain" , Moscow  (1966)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.A. Gol'dberg,  I.V. Ostrovskii,  "Value distribution of meromorphic functions" , Moscow  (1970)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M.L. Cartwright,  "Integral functions" , Cambridge Univ. Press  (1962)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M.L. Cartwright,  "Integral functions" , Cambridge Univ. Press  (1962)</TD></TR></table>

Revision as of 08:00, 6 June 2020


An entire function $ E _ \rho ( z) $ of a complex variable $ z $, introduced by G. Mittag-Leffler [1] as a generalization of the exponential function:

$$ E _ \rho ( z) = \sum _ { k= } 0 ^ \infty \frac{z ^ {k} }{\Gamma ( 1 + k / \rho ) } ,\ \ 1 \leq \rho < \infty . $$

Since the Mittag-Leffler function and the more general functions of Mittag-Leffler type

$$ E _ \rho ( z ; \mu ) = \sum _ { k= } 0 ^ \infty \frac{z ^ {k} }{\Gamma ( \mu + k / \rho ) } ,\ \ \mu , \rho \in \mathbf C , $$

are widely used in integral representations and transforms of analytic functions, their properties, in particular asymptotic properties, have been studied in great detail (see [2], [3]).

References

[1] G. Mittag-Leffler, "Sur la répresentation analytique d'une branche uniforme d'une fonction monogène" Acta Math. , 29 (1905) pp. 101–181
[2] M.M. Dzhrbashyan, "Integral transforms and representation of functions in the complex domain" , Moscow (1966) (In Russian)
[3] A.A. Gol'dberg, I.V. Ostrovskii, "Value distribution of meromorphic functions" , Moscow (1970) (In Russian)

Comments

References

[a1] M.L. Cartwright, "Integral functions" , Cambridge Univ. Press (1962)
How to Cite This Entry:
Mittag-Leffler function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mittag-Leffler_function&oldid=16180
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article