Namespaces
Variants
Actions

Difference between revisions of "Minimizing sequence"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A sequence of elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064010/m0640101.png" /> from a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064010/m0640102.png" /> for which the corresponding sequence of function values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064010/m0640103.png" /> tends to the greatest lower bound of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064010/m0640104.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064010/m0640105.png" />, that is,
+
<!--
 +
m0640101.png
 +
$#A+1 = 13 n = 0
 +
$#C+1 = 13 : ~/encyclopedia/old_files/data/M064/M.0604010 Minimizing sequence
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064010/m0640106.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The compactness of a minimizing sequence, that is, the existence of a subsequence converging to an element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064010/m0640107.png" />, in combination with the lower semi-continuity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064010/m0640108.png" />, guarantees the existence of an optimal element
+
A sequence of elements  $  y _ {n} $
 +
from a set  $  M $
 +
for which the corresponding sequence of function values  $  \phi ( y _ {n} ) $
 +
tends to the greatest lower bound of $  \phi $
 +
on  $  M $,
 +
that is,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064010/m0640109.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {n \rightarrow \infty }  \phi ( y _ {n} )  = \
 +
\inf _ {y \in M }  \phi ( y) .
 +
$$
  
In approximation theory, a minimizing sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064010/m06401010.png" /> for a given element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064010/m06401011.png" /> of a metric space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064010/m06401012.png" /> is a sequence for which
+
The compactness of a minimizing sequence, that is, the existence of a subsequence converging to an element of $  M $,
 +
in combination with the lower semi-continuity of  $  \phi $,
 +
guarantees the existence of an optimal element
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064010/m06401013.png" /></td> </tr></table>
+
$$
 +
y  ^ {n}  \in  M ,\  \phi ( y  ^ {n} )  = \min _ {
 +
y \in M }  \phi ( y) .
 +
$$
 +
 
 +
In approximation theory, a minimizing sequence  $  \{ y _ {n} \} \in M $
 +
for a given element  $  x $
 +
of a metric space  $  X = ( X , \rho ) $
 +
is a sequence for which
 +
 
 +
$$
 +
\rho ( x , y _ {n} )  \rightarrow  \rho ( x , M )  = \inf \
 +
\{ {\rho ( x , y ) } : {y \in M } \}
 +
.
 +
$$
  
 
See [[Approximately-compact set|Approximately-compact set]].
 
See [[Approximately-compact set|Approximately-compact set]].

Latest revision as of 08:00, 6 June 2020


A sequence of elements $ y _ {n} $ from a set $ M $ for which the corresponding sequence of function values $ \phi ( y _ {n} ) $ tends to the greatest lower bound of $ \phi $ on $ M $, that is,

$$ \lim\limits _ {n \rightarrow \infty } \phi ( y _ {n} ) = \ \inf _ {y \in M } \phi ( y) . $$

The compactness of a minimizing sequence, that is, the existence of a subsequence converging to an element of $ M $, in combination with the lower semi-continuity of $ \phi $, guarantees the existence of an optimal element

$$ y ^ {n} \in M ,\ \phi ( y ^ {n} ) = \min _ { y \in M } \phi ( y) . $$

In approximation theory, a minimizing sequence $ \{ y _ {n} \} \in M $ for a given element $ x $ of a metric space $ X = ( X , \rho ) $ is a sequence for which

$$ \rho ( x , y _ {n} ) \rightarrow \rho ( x , M ) = \inf \ \{ {\rho ( x , y ) } : {y \in M } \} . $$

See Approximately-compact set.

How to Cite This Entry:
Minimizing sequence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Minimizing_sequence&oldid=11597
This article was adapted from an original article by Yu.N. Subbotin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article