Namespaces
Variants
Actions

Difference between revisions of "Milne problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fix tex)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
m0637901.png
 +
$#A+1 = 38 n = 0
 +
$#C+1 = 38 : ~/encyclopedia/old_files/data/M063/M.0603790 Milne problem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A problem in [[Radiative transfer theory|radiative transfer theory]] concerning the single-velocity kinetic transport equation of quanta or particles in a half-space. The integral equation of the Milne problem with a source at infinity under zero incident flux of the radiation was first introduced by E. Milne [[#References|[1]]] for the case of isotropic scattering of quanta, diffusing without absorption in a stellar atmosphere.
 
A problem in [[Radiative transfer theory|radiative transfer theory]] concerning the single-velocity kinetic transport equation of quanta or particles in a half-space. The integral equation of the Milne problem with a source at infinity under zero incident flux of the radiation was first introduced by E. Milne [[#References|[1]]] for the case of isotropic scattering of quanta, diffusing without absorption in a stellar atmosphere.
  
 
The Milne equation takes the form
 
The Milne equation takes the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m0637901.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
B ( x)  =
 +
\frac{1}{2}
 +
 
 +
\int\limits _ { 0 } ^  \infty 
 +
B ( t) E _ {1} ( | x - t | ) d t .
 +
$$
  
Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m0637902.png" /> is the radiation (or particle) density and
+
Here $  B ( x) $
 +
is the radiation (or particle) density and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m0637903.png" /></td> </tr></table>
+
$$
 +
E _ {1} ( x)  = \
 +
\int\limits _ { 0 } ^ { 1 }
  
is the exponential integral function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m0637904.png" />.
+
\frac{e ^ {- x / \mu } } \mu
 +
  d \mu
 +
$$
 +
 
 +
is the exponential integral function $  ( E _ {1} ( x) = -  \mathop{\rm Ei} ( - x ) ) $.
  
 
In neutron physics the Milne problem is used for the formulation of approximate boundary conditions for solutions of the equations of a diffusion approximation in a bounded domain; in this connection one takes into account neutron capture by the medium, anisotropic scattering and the curvature of the boundary.
 
In neutron physics the Milne problem is used for the formulation of approximate boundary conditions for solutions of the equations of a diffusion approximation in a bounded domain; in this connection one takes into account neutron capture by the medium, anisotropic scattering and the curvature of the boundary.
Line 15: Line 40:
 
Here the Milne problem is to solve the integro-differential equation
 
Here the Milne problem is to solve the integro-differential equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m0637905.png" /></td> </tr></table>
+
$$
 +
\mu
 +
\frac{\partial  \psi }{\partial  x }
 +
+
 +
\psi ( x , \mu )  =
 +
\frac{c}{2}
 +
 
 +
\int\limits _ { -1 } ^ { +1 } p( \mu , \mu  ^  \prime  ) \psi( x , \mu  ^  \prime  )  d \mu  ^  \prime
 +
$$
  
 
with boundary conditions on the boundary of the half-space occupied by the matter, with a vacuum
 
with boundary conditions on the boundary of the half-space occupied by the matter, with a vacuum
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m0637906.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\psi ( 0 , \mu )  = 0 \ \
 +
\textrm{ for } \
 +
0 < \mu \leq  1 ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m0637907.png" /> is the mean number of secondary neutrons, colliding once with a nucleus (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m0637908.png" /> for scattering and absorbing neutrons by the medium), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m0637909.png" /> is the indicatrix of the scattering (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379010.png" /> for isotropic scattering). The spherical or cylindrical Milne problem on the distribution of neutrons in the space outside absorbing spheres or cylinders is stated analogously.
+
where $  c $
 +
is the mean number of secondary neutrons, colliding once with a nucleus ( $  c < 1 $
 +
for scattering and absorbing neutrons by the medium), and $  p ( \mu , \mu  ^  \prime  ) $
 +
is the indicatrix of the scattering ( $  p ( \mu , \mu  ^  \prime  ) = 1 $
 +
for isotropic scattering). The spherical or cylindrical Milne problem on the distribution of neutrons in the space outside absorbing spheres or cylinders is stated analogously.
  
 
The solution of the Milne problem is conveniently given by applying the [[Laplace transform|Laplace transform]] to the integro-differential transfer equation (see [[#References|[3]]]) and using the [[Wiener–Hopf method|Wiener–Hopf method]] to solve the functional equations thus obtained.
 
The solution of the Milne problem is conveniently given by applying the [[Laplace transform|Laplace transform]] to the integro-differential transfer equation (see [[#References|[3]]]) and using the [[Wiener–Hopf method|Wiener–Hopf method]] to solve the functional equations thus obtained.
  
In order to solve the Milne problem it was suggested that expansion relative to generalized eigen functions and methods for solving singular integral equations be used (see [[#References|[4]]]). The solution of the Milne problem for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379012.png" /> is sought in the form
+
In order to solve the Milne problem it was suggested that expansion relative to generalized eigen functions and methods for solving singular integral equations be used (see [[#References|[4]]]). The solution of the Milne problem for $  p ( \mu , \mu  ^  \prime  ) = 1 $,  
 +
$  c < 1 $
 +
is sought in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379013.png" /></td> </tr></table>
+
$$
 +
\psi ( x , \mu )  = \
 +
\psi _ {0-} ( x , \mu ) +
 +
a _ {0+} \psi _ {0+} ( x , \mu ) +
 +
\int\limits _ { 0 } ^ { 1 }
 +
A ( \nu ) \psi _  \nu  ( x , \mu )  d \nu ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379014.png" /></td> </tr></table>
+
$$
 +
\psi _  \nu  ( x , \mu )  = \
 +
\phi _  \nu  ( \mu )
 +
e ^ {- x / \nu } ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379015.png" /></td> </tr></table>
+
$$
 +
\phi _  \nu  ( \mu )  =
 +
\frac{c \nu }{2}
 +
P
 +
\frac{1}{\nu - \mu }
 +
+ \lambda ( \nu ) \delta ( \nu - \mu )
 +
$$
  
are the eigen functions of the continuous spectrum, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379016.png" /> denotes the Cauchy principal value, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379017.png" /> is the Dirac <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379018.png" />-function, and
+
are the eigen functions of the continuous spectrum, $  P $
 +
denotes the Cauchy principal value, $  \delta ( \nu - \mu ) $
 +
is the Dirac $  \delta $-
 +
function, and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379019.png" /></td> </tr></table>
+
$$
 +
\lambda ( \nu )  = 1 - \nu c \
 +
\mathop{\rm Artanh}  \nu ,\ \
 +
\psi _ {0 \pm  }  = \
 +
\phi _ {0 \pm  }
 +
( \mu ) e ^
 +
{\mp x / \nu _ {0} } .
 +
$$
  
The discrete eigen values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379020.png" /> are the roots of the characteristic equation
+
The discrete eigen values $  \pm  \nu _ {0} $
 +
are the roots of the characteristic equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379021.png" /></td> </tr></table>
+
$$
 +
\nu c  \mathop{\rm Artanh} 
 +
\frac{1} \nu
 +
  = 1 .
 +
$$
  
 
The eigen functions of the discrete spectrum take the form
 
The eigen functions of the discrete spectrum take the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379022.png" /></td> </tr></table>
+
$$
 +
\phi _ {0 \pm  }  ( \mu )  = \
 +
\pm 
 +
\frac{c \nu _ {0} }{2}
  
The system of eigen functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379025.png" />, turns out to be complete in the space of generalized functions on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379026.png" /> and they are orthogonal with respect to a weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379027.png" /> which is the solution of a singular integral equation (see [[#References|[4]]]).
+
\frac{1}{\pm  \nu _ {0} - \mu }
 +
.
 +
$$
  
The boundary condition (2) of the Milne problem gives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379028.png" />:
+
The system of eigen functions  $  \phi _ {0 + }  ( \mu ) $
 +
and  $  \phi _  \nu  ( \mu ) $,
 +
$  0 \leq  \nu \leq  1 $,
 +
turns out to be complete in the space of generalized functions on the interval  $  0 \leq  \mu \leq  1 $
 +
and they are orthogonal with respect to a weight  $  W ( \mu ) $
 +
which is the solution of a singular integral equation (see [[#References|[4]]]).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379029.png" /></td> </tr></table>
+
The boundary condition (2) of the Milne problem gives  $  ( \mu \geq  0 ) $:
  
that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379031.png" /> are defined as the coefficients in the expansion of the function
+
$$
 +
- \phi _ {0-} ( \mu )  = \
 +
a _ {0+} \phi _ {0+} ( \mu ) +
 +
\int\limits _ { 0 } ^ { 1 }
 +
A ( \nu ) \phi _  \nu  ( \mu )  d \nu ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379032.png" /></td> </tr></table>
+
that is,  $  a _ {0+} $
 +
and  $  A ( \nu ) $
 +
are defined as the coefficients in the expansion of the function
 +
 
 +
$$
 +
\phi _ {0-} ( \mu )  = \
 +
 
 +
\frac{c \nu _ {0} }{2}
 +
 
 +
\frac{1}{\nu _ {0} + \mu }
 +
.
 +
$$
  
 
The asymptotic density of the neutrons,
 
The asymptotic density of the neutrons,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379033.png" /></td> </tr></table>
+
$$
 +
B _ {ac} ( x)  = 2 \pi
 +
\int\limits _ { -1} ^ { +1 }
 +
[ \psi _ {0-} ( x , \mu ) + a _ {0+} \psi _ {0+} ( x , \mu )
 +
]  d \mu =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379034.png" /></td> </tr></table>
+
$$
 +
= \
 +
4 \pi e ^ {- x _ {0} / \nu _ {0} }  \sinh 
 +
\frac{x + x _ {0} }{\nu _ {0} }
 +
,
 +
$$
  
 
vanishes for
 
vanishes for
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379035.png" /></td> </tr></table>
+
$$
 +
= - x _ {0}  = \
 +
 
 +
\frac{\nu _ {0} }{2}
 +
 
 +
(  \mathop{\rm ln}  a _ {0+} - i \pi ) .
 +
$$
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379037.png" />, the Hopf constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063790/m06379038.png" />.
+
For $  c = 0 $,
 +
$  p ( \mu , \mu  ^  \prime  ) = 1 $,  
 +
the Hopf constant $  x _ {0} = 0.710  446 $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.A. Milne,  ''Mon. Notices Roy. Astron. Soc.'' , '''81'''  (1921)  pp. 361–375</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Hopf,  "Mathematical problems of radiative equilibrium" , Cambridge Univ. Press  (1934)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I. Sneddon,  "Fourier transforms" , McGraw-Hill  (1951)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  K.M. Case,  P.F. Zweifel,  "Linear transport theory" , Addison-Wesley  (1967)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E.A. Milne,  ''Mon. Notices Roy. Astron. Soc.'' , '''81'''  (1921)  pp. 361–375</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  E. Hopf,  "Mathematical problems of radiative equilibrium" , Cambridge Univ. Press  (1934)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  I. Sneddon,  "Fourier transforms" , McGraw-Hill  (1951)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  K.M. Case,  P.F. Zweifel,  "Linear transport theory" , Addison-Wesley  (1967)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Greenberg,  C. van der Mee,  V. Protopopescu,  "Boundary value problems in abstract kinetic theory" , Birkhäuser  (1987)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C. Cercignani,  "The Boltzmann equation and its applications" , Springer  (1988)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  B. Davison,  J.B. Sykes,  "Neutron transport theory" , Clarendon Press  (1957)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M.M.R. Williams,  "The slowing down and thermalization of neutrons" , North-Holland  (1966)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  W. Greenberg,  C. van der Mee,  V. Protopopescu,  "Boundary value problems in abstract kinetic theory" , Birkhäuser  (1987)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C. Cercignani,  "The Boltzmann equation and its applications" , Springer  (1988)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  B. Davison,  J.B. Sykes,  "Neutron transport theory" , Clarendon Press  (1957)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M.M.R. Williams,  "The slowing down and thermalization of neutrons" , North-Holland  (1966)</TD></TR></table>

Latest revision as of 20:31, 25 February 2021


A problem in radiative transfer theory concerning the single-velocity kinetic transport equation of quanta or particles in a half-space. The integral equation of the Milne problem with a source at infinity under zero incident flux of the radiation was first introduced by E. Milne [1] for the case of isotropic scattering of quanta, diffusing without absorption in a stellar atmosphere.

The Milne equation takes the form

$$ \tag{1 } B ( x) = \frac{1}{2} \int\limits _ { 0 } ^ \infty B ( t) E _ {1} ( | x - t | ) d t . $$

Here $ B ( x) $ is the radiation (or particle) density and

$$ E _ {1} ( x) = \ \int\limits _ { 0 } ^ { 1 } \frac{e ^ {- x / \mu } } \mu d \mu $$

is the exponential integral function $ ( E _ {1} ( x) = - \mathop{\rm Ei} ( - x ) ) $.

In neutron physics the Milne problem is used for the formulation of approximate boundary conditions for solutions of the equations of a diffusion approximation in a bounded domain; in this connection one takes into account neutron capture by the medium, anisotropic scattering and the curvature of the boundary.

Here the Milne problem is to solve the integro-differential equation

$$ \mu \frac{\partial \psi }{\partial x } + \psi ( x , \mu ) = \frac{c}{2} \int\limits _ { -1 } ^ { +1 } p( \mu , \mu ^ \prime ) \psi( x , \mu ^ \prime ) d \mu ^ \prime $$

with boundary conditions on the boundary of the half-space occupied by the matter, with a vacuum

$$ \tag{2 } \psi ( 0 , \mu ) = 0 \ \ \textrm{ for } \ 0 < \mu \leq 1 , $$

where $ c $ is the mean number of secondary neutrons, colliding once with a nucleus ( $ c < 1 $ for scattering and absorbing neutrons by the medium), and $ p ( \mu , \mu ^ \prime ) $ is the indicatrix of the scattering ( $ p ( \mu , \mu ^ \prime ) = 1 $ for isotropic scattering). The spherical or cylindrical Milne problem on the distribution of neutrons in the space outside absorbing spheres or cylinders is stated analogously.

The solution of the Milne problem is conveniently given by applying the Laplace transform to the integro-differential transfer equation (see [3]) and using the Wiener–Hopf method to solve the functional equations thus obtained.

In order to solve the Milne problem it was suggested that expansion relative to generalized eigen functions and methods for solving singular integral equations be used (see [4]). The solution of the Milne problem for $ p ( \mu , \mu ^ \prime ) = 1 $, $ c < 1 $ is sought in the form

$$ \psi ( x , \mu ) = \ \psi _ {0-} ( x , \mu ) + a _ {0+} \psi _ {0+} ( x , \mu ) + \int\limits _ { 0 } ^ { 1 } A ( \nu ) \psi _ \nu ( x , \mu ) d \nu , $$

where

$$ \psi _ \nu ( x , \mu ) = \ \phi _ \nu ( \mu ) e ^ {- x / \nu } , $$

$$ \phi _ \nu ( \mu ) = \frac{c \nu }{2} P \frac{1}{\nu - \mu } + \lambda ( \nu ) \delta ( \nu - \mu ) $$

are the eigen functions of the continuous spectrum, $ P $ denotes the Cauchy principal value, $ \delta ( \nu - \mu ) $ is the Dirac $ \delta $- function, and

$$ \lambda ( \nu ) = 1 - \nu c \ \mathop{\rm Artanh} \nu ,\ \ \psi _ {0 \pm } = \ \phi _ {0 \pm } ( \mu ) e ^ {\mp x / \nu _ {0} } . $$

The discrete eigen values $ \pm \nu _ {0} $ are the roots of the characteristic equation

$$ \nu c \mathop{\rm Artanh} \frac{1} \nu = 1 . $$

The eigen functions of the discrete spectrum take the form

$$ \phi _ {0 \pm } ( \mu ) = \ \pm \frac{c \nu _ {0} }{2} \frac{1}{\pm \nu _ {0} - \mu } . $$

The system of eigen functions $ \phi _ {0 + } ( \mu ) $ and $ \phi _ \nu ( \mu ) $, $ 0 \leq \nu \leq 1 $, turns out to be complete in the space of generalized functions on the interval $ 0 \leq \mu \leq 1 $ and they are orthogonal with respect to a weight $ W ( \mu ) $ which is the solution of a singular integral equation (see [4]).

The boundary condition (2) of the Milne problem gives $ ( \mu \geq 0 ) $:

$$ - \phi _ {0-} ( \mu ) = \ a _ {0+} \phi _ {0+} ( \mu ) + \int\limits _ { 0 } ^ { 1 } A ( \nu ) \phi _ \nu ( \mu ) d \nu , $$

that is, $ a _ {0+} $ and $ A ( \nu ) $ are defined as the coefficients in the expansion of the function

$$ \phi _ {0-} ( \mu ) = \ \frac{c \nu _ {0} }{2} \frac{1}{\nu _ {0} + \mu } . $$

The asymptotic density of the neutrons,

$$ B _ {ac} ( x) = 2 \pi \int\limits _ { -1} ^ { +1 } [ \psi _ {0-} ( x , \mu ) + a _ {0+} \psi _ {0+} ( x , \mu ) ] d \mu = $$

$$ = \ 4 \pi e ^ {- x _ {0} / \nu _ {0} } \sinh \frac{x + x _ {0} }{\nu _ {0} } , $$

vanishes for

$$ x = - x _ {0} = \ \frac{\nu _ {0} }{2} ( \mathop{\rm ln} a _ {0+} - i \pi ) . $$

For $ c = 0 $, $ p ( \mu , \mu ^ \prime ) = 1 $, the Hopf constant $ x _ {0} = 0.710 446 $.

References

[1] E.A. Milne, Mon. Notices Roy. Astron. Soc. , 81 (1921) pp. 361–375
[2] E. Hopf, "Mathematical problems of radiative equilibrium" , Cambridge Univ. Press (1934)
[3] I. Sneddon, "Fourier transforms" , McGraw-Hill (1951)
[4] K.M. Case, P.F. Zweifel, "Linear transport theory" , Addison-Wesley (1967)

Comments

References

[a1] W. Greenberg, C. van der Mee, V. Protopopescu, "Boundary value problems in abstract kinetic theory" , Birkhäuser (1987)
[a2] C. Cercignani, "The Boltzmann equation and its applications" , Springer (1988)
[a3] B. Davison, J.B. Sykes, "Neutron transport theory" , Clarendon Press (1957)
[a4] M.M.R. Williams, "The slowing down and thermalization of neutrons" , North-Holland (1966)
How to Cite This Entry:
Milne problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Milne_problem&oldid=17688
This article was adapted from an original article by V.A. Chuyanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article