Meijer transform
where is the Whittaker function (cf. Whittaker functions). The corresponding inversion formula is
For the Meijer transform becomes the Laplace transform; for it becomes the -transform
where is the Macdonald function.
The Varma transform
reduces to a Meijer transform.
The Meijer -transform (or the Meijer–Bessel transform) is the integral transform
If the function is locally integrable on , has bounded variation in a neighbourhood of the point , and if the integral
converges, then the following inversion formula is valid:
For the Meijer -transform turns into the Laplace transform.
The Meijer transform and Meijer -transform were introduced by C.S. Meijer in [1] and, respectively, .
References
[1] | C.S. Meijer, "Eine neue Erweiterung der Laplace Transformation I" Proc. Koninkl. Ned. Akad. Wet. , 44 (1941) pp. 727–737 |
[2a] | C.S. Meijer, "Ueber eine neue Erweiterung der Laplace Transformation I" Proc. Koninkl. Ned. Akad. Wet. , 43 (1940) pp. 599–608 |
[2b] | C.S. Meijer, "Ueber eine neue Erweiterung der Laplace Transformation II" Proc. Koninkl. Ned. Akad. Wet. , 43 (1940) pp. 702–711 |
[3] | Y.A. Brychkov, A.P. Prudnikov, "Integral transforms of generalized functions" , Gordon & Breach (1989) (Translated from Russian) |
[4] | V.A. Ditkin, A.P. Prudnikov, "Operational calculus" Progress in Math. , 1 (1968) pp. 1–75 Itogi Nauk. Mat. Anal. 1966 (1967) pp. 7–82 |
Meijer transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Meijer_transform&oldid=12567