Namespaces
Variants
Actions

Matrix ring

From Encyclopedia of Mathematics
Revision as of 17:13, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

full matrix ring

The ring of all square matrices of a fixed order over a ring . The ring of -dimensional matrices over is denoted by or . Throughout this article is an associative ring with identity (cf. Associative rings and algebras).

The ring is isomorphic to the ring of all endomorphisms of the free right -module , possessing a basis with elements. The matrix is the identity in . An associative ring with identity 1 is isomorphic to if and only if there is in a set of elements , , subject to the following conditions:

1) , ;

2) the centralizer of the set of elements in is isomorphic to .

The centre of coincides with , where is the centre of ; for the ring is non-commutative.

The multiplicative group of the ring (the group of all invertible elements), called the general linear group, is denoted by . A matrix from is invertible in if and only if its columns form a basis of the free right module of all -dimensional matrices over . If is commutative, then the invertibility of a matrix in is equivalent to the invertibility of its determinant, , in . The equality holds.

The ring is simple if and only if is simple, for the two-sided ideals in are of the form , where is a two-sided ideal in . An Artinian ring is simple if and only if it is isomorphic to a matrix ring over a skew-field (the Wedderburn–Artin theorem). If denotes the Jacobson radical of the ring , then . Consequently, every matrix ring over a semi-simple ring is semi-simple. If is regular (i.e. if for every there is a such that ), then so is . If is a ring with an invariant basis number, i.e. the number of elements in a basis of each free -module does not depend of the choice of the basis, then also has this property. The rings and are equivalent in the sense of Morita (see Morita equivalence): The category of -modules is equivalent to the category of -modules. However, the fact that projective -modules are free does not necessarily entail that projective -modules are free too. For instance, if is a field and , then there exist finitely-generated projective -modules which are not free.

References

[1] C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973)
[2] J. Lambek, "Lectures on rings and modules" , Blaisdell (1966)
[3] L.A. Bokut', "Associative rings" , 1 , Novosibirsk (1977) (In Russian)


Comments

References

[a1] P.M. Cohn, "Algebra" , 1–2 , Wiley (1974–1977)
How to Cite This Entry:
Matrix ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Matrix_ring&oldid=15509
This article was adapted from an original article by D.A. Suprunenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article