Namespaces
Variants
Actions

Matrix Viète theorem

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

matrix Vieta theorem

The standard (scalar) Viète formulas express the coefficients of an equation

\begin{equation} \tag{a1} x ^ { n } + a _ { 1 } x ^ { n - 1 } + \ldots + a _ { n - 1 } x + a _ { n } = 0 \end{equation}

in terms of the roots: up to sign, $a_i$ is the $i$th elementary symmetric function of the roots $\alpha_{1} , \ldots , \alpha _ { n }$. See also Viète theorem.

Consider now a matrix equation

\begin{equation} \tag{a2} X ^ { n } + A _ { 1 } X ^ { n - 1 } + \ldots + A _ { n - 1 } X + A _ { n } = 0, \end{equation}

where the solutions $X$ and coefficients $A_i$ are square complex matrices. A set of $n$ square matrices $X _ { 1 } , \ldots , X _ { n }$ of size $m \times m$ is called independent if the block Vandermonde determinant

\begin{equation*} \operatorname { det } \left( \begin{array} { c c c } { I } & { \ldots } & { I } \\ { X _ { 1 } } & { \ldots } & { X _ { n } } \\ { \vdots } & { \ldots } & { \vdots } \\ { X _ { 1 } ^ { n - 1 } } & { \ldots } & { X _ { n } ^ { n - 1 } } \end{array} \right) \end{equation*}

does not vanish. The matrix Viète theorem gives formulas for $A_i$ in terms of quasi-determinants, [a3], [a4], involving $n$ independent solutions of (a2), [a1], [a2]. In particular, if $X _ { 1 } , \ldots , X _ { n }$ are $n$ independent solutions of (a2), then

\begin{equation*} \operatorname { Tr } ( X _ { 1 } ) + \ldots + \operatorname { Tr } ( X _ { n } ) = - \operatorname { Tr } ( A _ { 1 } ), \end{equation*}

\begin{equation*} \operatorname { det } ( X _ { 1 } ) \ldots \operatorname { det } ( X _ { n } ) = ( - 1 ) ^ { n } \operatorname { det } ( A _ { n } ) , \operatorname { det } ( I - \lambda X _ { 1 } ) \ldots \operatorname { det } ( I - \lambda X _ { n } )= \end{equation*}

\begin{equation*} = \operatorname { det } ( 1 + A _ { 1 } \lambda + \ldots + A _ { n } \lambda ^ { n } ). \end{equation*}

This theorem generalizes to the case of equations in an arbitrary associative ring (cf. also Associative rings and algebras), with an adequate notion of trace and determinant, see [a1], [a2].

References

[a1] A. Connes, A. Schwarz, "Matrix Vieta theorem revisited" Lett. Math. Phys. , 39 : 4 (1997) pp. 349–353 Zbl 0874.15010
[a2] D. Fuchs, A. Schwarz, "Matrix Vieta theorem" Amer. Math. Soc. Transl. (2) , 169 (1995) pp. 15–22
[a3] I.M. Gel'fand, D. Krob, A. Lascoux, B. Leclerc, V.S. Redakh, J.Y. Thibon, "Noncomutative symmetric functions" Adv. Math. , 112 (1995) pp. 218–348
[a4] I.M. Gel'fand, V.S. Redakh, "A theory of noncommutative determinants and characteristic functions of graphs I" Publ. LACIM (Univ. Quebec) , 14 pp. 1–26
How to Cite This Entry:
Matrix Viète theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Matrix_Vi%C3%A8te_theorem&oldid=53037
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article