Namespaces
Variants
Actions

Mass and co-mass

From Encyclopedia of Mathematics
Revision as of 07:59, 6 June 2020 by Ulf Rehmann (talk | contribs) (tex encoded by computer)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


Adjoint norms (cf. Norm) in certain vector spaces dual to each other.

1) The mass of an $ r $- vector $ \alpha $, i.e. an element of the $ r $- fold exterior product of a vector space, is the number

$$ | \alpha | _ {0} = \ \inf \ \left \{ {\sum _ { i } | \alpha _ {i} | } : {\alpha = \sum {\alpha _ {i} } ,\ \alpha _ {i} \ \textrm{ simple } r \textrm{ - vectors } } \right \} . $$

The co-mass of an $ r $- covector $ \omega $ is the number

$$ | \omega | _ {0} = \ \sup _ \alpha \{ {| \omega \cdot \alpha | } : { \alpha \textrm{ a simple } r \textrm{ - vector } , | \alpha | = 1 } \} . $$

Here $ | \cdot | $ is the standard norm of an $ r $- vector and $ \omega \cdot \alpha $ is the scalar product of a vector and a covector.

The mass $ | \alpha | _ {0} $ and the co-mass $ | \omega | _ {0} $ are adjoint norms in the spaces of $ r $- vectors $ V _ {[} r] $ and $ r $- covectors $ V ^ {[} r] $, respectively. In this connection:

a) $ | \omega | _ {0} = \sup _ \alpha \{ {| \omega \cdot \alpha | } : {| \alpha | _ {0} = 1 } \} $, $ | \alpha | _ {0} = \sup _ \alpha \{ {| \omega \cdot \alpha | } : {| \omega | _ {0} = 1 } \} $;

b) $ | \alpha | _ {0} \geq | \alpha | $, $ | \omega | _ {0} \geq | \omega | $, and equalities hold if and only if $ \alpha $( $ \omega $) is a simple $ r $-( co)vector;

c) $ | \alpha \lor \beta | _ {0} \leq | \alpha | _ {0} | \beta | _ {0} $, $ | \omega \lor \zeta | _ {0} \leq B | \omega | _ {0} | \zeta | _ {0} $ for exterior products $ \lor $, where for a simple multi-covector $ \omega $( or $ \zeta $) $ B = 1 $, and, in general, $ B = ( _ {\ r } ^ {r+} s ) $ if $ \omega \in V ^ {[} r] $ and $ \zeta \in V ^ {[} s] $;

d) $ | \omega \wedge \alpha | _ {0} \leq \widetilde{B} | \omega | _ {0} | \alpha | _ {0} $ for inner products $ \wedge $, where $ \widetilde{B} = 1 $ for $ r \geq s $ and $ \widetilde{B} = ( _ {r} ^ {s} ) $ for $ r \leq s $, $ \omega \in V ^ {[} r] $ and $ \alpha \in V _ {[} s] $.

These definitions enable one to define the mass and co-mass for sections of fibre bundles whose standard fibres are $ V ^ {[} r] $ and $ V _ {[} r] $. For example, the co-mass of a form $ \omega $ on a domain $ G \subset E ^ {n} $ is

$$ | \omega | _ {0} = \ \sup \{ {| \omega ( p) | _ {0} } : {p \in G } \} . $$

2) The mass of a polyhedral chain $ A = \sum {a _ {i} } \sigma _ {i} ^ {r} $ is

$$ | A | = \sum | a _ {i} | | \sigma _ {i} ^ {r} | , $$

where $ | \sigma _ {i} ^ {r} | $ is the volume of the cell $ \sigma _ {i} ^ {r} $. For arbitrary chains the mass (finite or infinite) can be defined in various ways; for flat chains (see Flat norm) and sharp chains (see Sharp norm) these give the same value to the mass.

3) The co-mass of a (flat, in particular, sharp) cochain $ X $ is defined in the standard way:

$$ | X | = \ \sup _ {A \neq 0 } \ \frac{| X \cdot A | }{| A | } , $$

where $ A $ is a polyhedral chain and $ X \cdot A $ is the value of the cochain $ X $ on the chain $ A $.

For references see Flat norm.

Comments

A simple $ r $- vector $ \alpha $ is an element of the form $ \alpha = \beta _ {1} \lor \dots \lor \beta _ {r} $ in the $ r $- fold exterior product $ V _ {[} r] $ of a vector space $ V $. Here "" denotes exterior product and $ \beta _ {1} \dots \beta _ {r} \in V $.

References

[a1] H. Federer, "Geometric measure theory" , Springer (1969) pp. Sect. 1.8 MR0257325 Zbl 0176.00801
How to Cite This Entry:
Mass and co-mass. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mass_and_co-mass&oldid=47781
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article