Namespaces
Variants
Actions

Difference between revisions of "Markov criterion"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (fix tex)
m (fixing dots)
 
Line 15: Line 15:
 
A theorem which in some cases enables one to give effectively the polynomial and the error of best integral approximation of a function  $  f $.  
 
A theorem which in some cases enables one to give effectively the polynomial and the error of best integral approximation of a function  $  f $.  
 
It was established by A.A. Markov in 1898 (see [[#References|[1]]]). Let  $  \{ \phi _ {k} ( x) \} $,  
 
It was established by A.A. Markov in 1898 (see [[#References|[1]]]). Let  $  \{ \phi _ {k} ( x) \} $,  
$  k = 1 \dots n $,  
+
$  k = 1, \dots, n $,  
 
be a system of linearly independent functions continuous on the interval  $  [ a , b ] $,  
 
be a system of linearly independent functions continuous on the interval  $  [ a , b ] $,  
 
and let the continuous function  $  \psi $
 
and let the continuous function  $  \psi $
Line 25: Line 25:
 
\int\limits _ { a } ^ { b }  
 
\int\limits _ { a } ^ { b }  
 
\phi _ {k} ( x)  \mathop{\rm sgn}  \psi ( x)  d x  =  0 ,\ \  
 
\phi _ {k} ( x)  \mathop{\rm sgn}  \psi ( x)  d x  =  0 ,\ \  
k = 1 \dots n .
+
k = 1, \dots, n .
 
$$
 
$$
  
Line 37: Line 37:
  
 
has the property that the difference  $  f - P _ {n}  ^ {*} $
 
has the property that the difference  $  f - P _ {n}  ^ {*} $
changes sign at the points  $  x _ {1} \dots x _ {r} $,  
+
changes sign at the points  $  x _ {1}, \dots, x _ {r} $,  
 
and only at those points, then  $  P _ {n}  ^ {*} $
 
and only at those points, then  $  P _ {n}  ^ {*} $
 
is the polynomial of best integral approximation to  $  f $
 
is the polynomial of best integral approximation to  $  f $
Line 56: Line 56:
 
$$
 
$$
  
For the system  $  \{ 1 , \cos  x \dots \cos  n x \} $
+
For the system  $  \{ 1 , \cos  x, \dots, \cos  n x \} $
 
on  $  [ 0 , \pi ] $,  
 
on  $  [ 0 , \pi ] $,  
 
$  \psi $
 
$  \psi $
 
can be taken to be  $  \cos  ( n + 1) x $;  
 
can be taken to be  $  \cos  ( n + 1) x $;  
for the system  $  \{ \sin  x \dots \sin  n x \} $,  
+
for the system  $  \{ \sin  x, \dots, \sin  n x \} $,  
 
$  0 \leq  x \leq  \pi $,  
 
$  0 \leq  x \leq  \pi $,  
 
$  \psi $
 
$  \psi $
 
can be taken to be  $  \sin  ( n + 1 ) x $;  
 
can be taken to be  $  \sin  ( n + 1 ) x $;  
and for the system  $  \{ 1 , x \dots x  ^ {n} \} $,  
+
and for the system  $  \{ 1 , x, \dots, x  ^ {n} \} $,  
 
$  - 1 \leq  x \leq  1 $,  
 
$  - 1 \leq  x \leq  1 $,  
 
one can take  $  \psi ( x) = \sin ( ( n + 2 )  \mathop{\rm arc}  \cos  x ) $.
 
one can take  $  \psi ( x) = \sin ( ( n + 2 )  \mathop{\rm arc}  \cos  x ) $.

Latest revision as of 12:21, 18 February 2022


for best integral approximation

A theorem which in some cases enables one to give effectively the polynomial and the error of best integral approximation of a function $ f $. It was established by A.A. Markov in 1898 (see [1]). Let $ \{ \phi _ {k} ( x) \} $, $ k = 1, \dots, n $, be a system of linearly independent functions continuous on the interval $ [ a , b ] $, and let the continuous function $ \psi $ change sign at the points $ x _ {1} < \dots < x _ {r} $ in $ ( a , b ) $ and be such that

$$ \int\limits _ { a } ^ { b } \phi _ {k} ( x) \mathop{\rm sgn} \psi ( x) d x = 0 ,\ \ k = 1, \dots, n . $$

If the polynomial

$$ P _ {n} ^ {*} ( x) = \ \sum _ { k= 1} ^ { n } c _ {k} ^ {*} \phi _ {k} ( x) $$

has the property that the difference $ f - P _ {n} ^ {*} $ changes sign at the points $ x _ {1}, \dots, x _ {r} $, and only at those points, then $ P _ {n} ^ {*} $ is the polynomial of best integral approximation to $ f $ and

$$ \inf _ {\{ c _ {k} \} } \ \int\limits _ { a } ^ { b } \left | f ( x) - \sum _ { k= 1} ^ { n } c _ {k} \phi _ {k} ( x) \ \right | d x = $$

$$ = \ \int\limits _ { a } ^ { b } \left | f ( x) - P _ {n} ^ {*} ( x) \right | d x = \left | \int\limits _ { a } ^ { b } f ( x) \mathop{\rm sgn} \psi ( x) d x \right | . $$

For the system $ \{ 1 , \cos x, \dots, \cos n x \} $ on $ [ 0 , \pi ] $, $ \psi $ can be taken to be $ \cos ( n + 1) x $; for the system $ \{ \sin x, \dots, \sin n x \} $, $ 0 \leq x \leq \pi $, $ \psi $ can be taken to be $ \sin ( n + 1 ) x $; and for the system $ \{ 1 , x, \dots, x ^ {n} \} $, $ - 1 \leq x \leq 1 $, one can take $ \psi ( x) = \sin ( ( n + 2 ) \mathop{\rm arc} \cos x ) $.

References

[1] A.A. Markov, "Selected works" , Moscow-Leningrad (1948) (In Russian)
[2] N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian)
[3] I.K. Daugavet, "Introduction to the theory of approximation of functions" , Leningrad (1977) (In Russian)

Comments

References

[a1] E.W. Cheney, "Introduction to approximation theory" , Chelsea, reprint (1982)
[a2] M.W. Müller, "Approximationstheorie" , Akad. Verlagsgesellschaft (1978)
[a3] J.R. Rice, "The approximation of functions" , 1. Linear theory , Addison-Wesley (1964)
How to Cite This Entry:
Markov criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Markov_criterion&oldid=51013
This article was adapted from an original article by N.P. KorneichukV.P. Motornyi (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article