Namespaces
Variants
Actions

Difference between revisions of "Mapping torus"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 101 formulas out of 101 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
Line 1: Line 1:
 +
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 +
Out of 101 formulas, 101 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
''of an automorphism of a manifold''
 
''of an automorphism of a manifold''
  
The mapping torus of a self-mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201101.png" /> is the identification space
+
The mapping torus of a self-mapping $h : F \rightarrow F$ is the identification space
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201102.png" /></td> </tr></table>
+
\begin{equation*} T ( h ) = F \times [ 0,1 ] / \{ ( x , 0 ) \sim ( h ( x ) , 1 ) : x \in F \}, \end{equation*}
  
 
which is equipped with a canonical mapping
 
which is equipped with a canonical mapping
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201103.png" /></td> </tr></table>
+
\begin{equation*} p : T ( h ) \rightarrow S ^ { 1 } = [ 0,1 ] / \{ 0 \sim 1 \}, \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201104.png" /></td> </tr></table>
+
\begin{equation*} ( x , t ) \rightarrow t. \end{equation*}
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201105.png" /> is a closed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201106.png" />-dimensional [[Manifold|manifold]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201107.png" /> is an [[Automorphism|automorphism]], then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201108.png" /> is a closed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m1201109.png" />-dimensional manifold such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011010.png" /> is the projection of a fibre bundle (cf. also [[Fibration|Fibration]]) with fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011011.png" /> and monodromy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011012.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011013.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011014.png" />-dimensional manifold with boundary and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011015.png" /> is an automorphism such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011016.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011017.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011018.png" />-dimensional manifold with boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011019.png" />, and the union
+
If $F$ is a closed $n$-dimensional [[Manifold|manifold]] and $h : F \rightarrow F$ is an [[Automorphism|automorphism]], then $T ( h )$ is a closed $( n + 1 )$-dimensional manifold such that $p$ is the projection of a fibre bundle (cf. also [[Fibration|Fibration]]) with fibre $F$ and monodromy $h$. If $F$ is an $n$-dimensional manifold with boundary and $h : F \rightarrow F$ is an automorphism such that $h | _ { \partial F } = 1 : \partial F \rightarrow \partial F$, then $T ( h )$ is an $( n + 1 )$-dimensional manifold with boundary $\partial T ( h ) = \partial F \times S ^ { 1 }$, and the union
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011020.png" /></td> </tr></table>
+
\begin{equation*} t ( h ) = T ( h ) \bigcup_{ \partial T ( h )} \partial F \times D ^ { 2 } \end{equation*}
  
is a closed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011021.png" />-dimensional manifold, called an open book. It is important to know when manifolds are fibre bundles over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011022.png" /> and open books, for in those cases the classification of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011023.png" />-dimensional manifolds is reduced to the classification of automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011024.png" />-dimensional manifolds.
+
is a closed $( n + 1 )$-dimensional manifold, called an open book. It is important to know when manifolds are fibre bundles over $S ^ { 1 }$ and open books, for in those cases the classification of $( n + 1 )$-dimensional manifolds is reduced to the classification of automorphisms of $n$-dimensional manifolds.
  
A codimension-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011025.png" /> submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011026.png" /> is fibred if it has a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011027.png" /> such that the exterior <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011028.png" /> is a mapping torus, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011029.png" /> is an open book for some automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011030.png" /> of a codimension-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011031.png" /> submanifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011032.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011033.png" /> (a Seifert surface, cf. [[Seifert manifold|Seifert manifold]]). Fibred knots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011034.png" /> and fibred links <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011035.png" /> have particularly strong geometric and algebraic properties (cf. also [[Knot and link diagrams|Knot and link diagrams]]; [[Knot theory|Knot theory]]).
+
A codimension-$2$ submanifold $K ^ { n } \subset M ^ { n + 2 }$ is fibred if it has a neighbourhood $K \times D ^ { 2 } \subset M$ such that the exterior $X = \operatorname { cl } ( M \backslash ( K \times D ^ { 2 } ) )$ is a mapping torus, i.e. if $X = t ( h )$ is an open book for some automorphism $h : F \rightarrow F$ of a codimension-$1$ submanifold $F ^ { n + 1 } \subset M$ with $\partial F = K$ (a Seifert surface, cf. [[Seifert manifold|Seifert manifold]]). Fibred knots $S ^ { n } \subset S ^ { n + 2 }$ and fibred links $\cup S ^ { n } \subset S ^ { n + 2 }$ have particularly strong geometric and algebraic properties (cf. also [[Knot and link diagrams|Knot and link diagrams]]; [[Knot theory|Knot theory]]).
  
In 1923, J.W. Alexander used geometry to prove that every closed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011036.png" />-dimensional manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011037.png" /> is an open book, that is, there exists a fibred link <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011038.png" />, generalizing the Heegaard splitting.
+
In 1923, J.W. Alexander used geometry to prove that every closed $3$-dimensional manifold $M ^ { 3 }$ is an open book, that is, there exists a fibred link $\cup S ^ { 1 } \subset M$, generalizing the Heegaard splitting.
  
Fibred knots <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011039.png" /> came to prominence in the 1960s with the influential work of J. Milnor on singular points of complex hypersurfaces, and with the examples of E. Brieskorn realizing the exotic spheres as links of singular points.
+
Fibred knots $S ^ { n } \subset S ^ { n + 2 }$ came to prominence in the 1960s with the influential work of J. Milnor on singular points of complex hypersurfaces, and with the examples of E. Brieskorn realizing the exotic spheres as links of singular points.
  
Connected infinite cyclic coverings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011040.png" /> of a connected space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011041.png" /> are in one-one correspondence with expressions of the [[Fundamental group|fundamental group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011042.png" /> as a group extension
+
Connected infinite cyclic coverings $\overline{M}$ of a connected space $M$ are in one-one correspondence with expressions of the [[Fundamental group|fundamental group]] $\pi _ { 1 } ( M )$ as a group extension
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011043.png" /></td> </tr></table>
+
\begin{equation*} \mathcal{E} : 1 \rightarrow \pi _ { 1 } ( \overline { M } ) \rightarrow \pi _ { 1 } ( M ) \rightarrow \mathbf{Z} \rightarrow \{ 1 \}, \end{equation*}
  
and also with the homotopy classes of mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011044.png" /> inducing surjections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011045.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011046.png" /> is the projection of a fibre bundle with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011047.png" /> compact, the non-compact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011048.png" /> is homotopy equivalent (cf. also [[Homotopy type|Homotopy type]]) to the fibre <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011049.png" />, which is compact, so that the fundamental group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011050.png" /> and the homology groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011051.png" /> are finitely generated.
+
and also with the homotopy classes of mappings $p : M \rightarrow S ^ { 1 }$ inducing surjections $p * : \pi _ { 1 } ( M ) \rightarrow \pi _ { 1 } ( S ^ { 1 } ) = \mathbf{Z}$. If $p : M \rightarrow S ^ { 1 }$ is the projection of a fibre bundle with $M$ compact, the non-compact space $\overline{M}$ is homotopy equivalent (cf. also [[Homotopy type|Homotopy type]]) to the fibre $F$, which is compact, so that the fundamental group $\pi _ { 1 } ( \overline { M } ) = \pi _ { 1 } ( F )$ and the homology groups $H_{ *} ( \overline { M } ) = H_{ *} ( F )$ are finitely generated.
  
In 1962, J. Stallings used group theory to prove that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011052.png" /> is an irreducible closed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011053.png" />-dimensional manifold with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011054.png" /> and with an extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011055.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011056.png" /> is finitely generated (cf. also [[Finitely-generated group|Finitely-generated group]]), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011057.png" /> is a fibre bundle over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011058.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011059.png" /> for some automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011060.png" /> of a surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011061.png" />. In 1964, W. Browder and J. Levine used simply-connected [[Surgery|surgery]] to prove that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011062.png" /> every closed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011063.png" />-dimensional manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011064.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011066.png" /> finitely generated, is a fibre bundle over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011067.png" />. In 1984, M. Kreck used this type of surgery to compute the bordism groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011068.png" /> of automorphisms of high-dimensional manifolds and to evaluate the mapping-torus mapping
+
In 1962, J. Stallings used group theory to prove that if $M$ is an irreducible closed $3$-dimensional manifold with $\pi _ { 1 } ( M ) \neq \mathbf{Z} _ { 2 }$ and with an extension $\cal E$ such that $\pi _ { 1 } ( \overline { M } )$ is finitely generated (cf. also [[Finitely-generated group|Finitely-generated group]]), then $M$ is a fibre bundle over $S ^ { 1 }$, with $M = T ( h )$ for some automorphism $h : F \rightarrow F$ of a surface $F ^ { 2 } \subset M$. In 1964, W. Browder and J. Levine used simply-connected [[Surgery|surgery]] to prove that for $n \geq 6$ every closed $n$-dimensional manifold $M$ with $\pi _ { 1 } ( M ) = \mathbf{Z}$ and $H_{ *} ( \overline { M } )$ finitely generated, is a fibre bundle over $S ^ { 1 }$. In 1984, M. Kreck used this type of surgery to compute the bordism groups $\Delta_*$ of automorphisms of high-dimensional manifolds and to evaluate the mapping-torus mapping
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011069.png" /></td> </tr></table>
+
\begin{equation*} T : \Delta _ { n } \rightarrow \Omega _ { n + 1 } ( S ^ { 1 } ), \end{equation*}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011070.png" /></td> </tr></table>
+
\begin{equation*} ( F ^ { n } , h : F \rightarrow F ) \rightarrow T ( h ), \end{equation*}
  
to the ordinary bordism over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011071.png" /> (cf. also [[Bordism|Bordism]]).
+
to the ordinary bordism over $S ^ { 1 }$ (cf. also [[Bordism|Bordism]]).
  
A band is a compact manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011072.png" /> with a connected infinite cyclic covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011073.png" /> which is finitely dominated, i.e. such that there exists a finite [[CW-complex|CW-complex]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011074.png" /> with mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011075.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011076.png" /> and a homotopy <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011077.png" />. In 1968, F.T. Farrell used non-simply-connected surgery theory to prove that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011078.png" /> a piecewise-linear (or differentiable) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011079.png" />-dimensional manifold band <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011080.png" /> is a fibre bundle over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011081.png" /> if and only if a [[Whitehead torsion|Whitehead torsion]] obstruction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011082.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011083.png" />. The theorem was important in the structure theory of high-dimensional topological manifolds, and in 1970 was extended to topological manifolds by L. Siebenmann. There is also a version for Hilbert cube manifolds, obtained in 1974 by T.A. Chapman and Siebenmann. The fibering obstruction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011084.png" /> for finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011085.png" /> measures the difference between the intrinsic simple homotopy type of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011086.png" /> given by a handle-body decomposition and the extrinsic simple homotopy type given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011087.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011088.png" /> a generating covering translation.
+
A band is a compact manifold $M$ with a connected infinite cyclic covering $\overline{M}$ which is finitely dominated, i.e. such that there exists a finite [[CW-complex|CW-complex]] $K$ with mappings $f : \overline { M } \rightarrow K$, $g : K \rightarrow \overline { M }$ and a homotopy $g f \simeq 1 : \overline { M } \rightarrow \overline { M }$. In 1968, F.T. Farrell used non-simply-connected surgery theory to prove that for $n \geq 6$ a piecewise-linear (or differentiable) $n$-dimensional manifold band $M$ is a fibre bundle over $S ^ { 1 }$ if and only if a [[Whitehead torsion|Whitehead torsion]] obstruction $\Phi ( M ) \in \operatorname{Wh} ( \pi _ { 1 } ( M ) )$ is $0$. The theorem was important in the structure theory of high-dimensional topological manifolds, and in 1970 was extended to topological manifolds by L. Siebenmann. There is also a version for Hilbert cube manifolds, obtained in 1974 by T.A. Chapman and Siebenmann. The fibering obstruction $\Phi ( M )$ for finite-dimensional $M$ measures the difference between the intrinsic simple homotopy type of $M$ given by a handle-body decomposition and the extrinsic simple homotopy type given by $M \simeq T ( \zeta )$ with $\zeta : \overline { M } \rightarrow \overline { M }$ a generating covering translation.
  
In 1972, H.E. Winkelnkemper used surgery to prove that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011089.png" /> a simply-connected <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011090.png" />-dimensional manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011091.png" /> is an open book if and only if the signature of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011092.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011093.png" />. In 1977, T. Lawson used non-simply-connected surgery to prove that for odd <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011094.png" /> every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011095.png" />-dimensional manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011096.png" /> is an open book. In 1979, F. Quinn used non-simply-connected surgery to prove that for even <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011097.png" /> an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011098.png" />-dimensional manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m12011099.png" /> is an open book if and only if an obstruction in the asymmetric Witt group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m120110100.png" /> vanishes, generalizing the Wall surgery obstruction (cf. also [[Witt decomposition|Witt decomposition]]).
+
In 1972, H.E. Winkelnkemper used surgery to prove that for $n \geq 7$ a simply-connected $n$-dimensional manifold $M$ is an open book if and only if the signature of $M$ is $0$. In 1977, T. Lawson used non-simply-connected surgery to prove that for odd $n \geq 7$ every $n$-dimensional manifold $M$ is an open book. In 1979, F. Quinn used non-simply-connected surgery to prove that for even $n \geq 6$ an $n$-dimensional manifold $M$ is an open book if and only if an obstruction in the asymmetric Witt group of $\mathbf{Z} [ \pi _ { 1 } ( M ) ]$ vanishes, generalizing the Wall surgery obstruction (cf. also [[Witt decomposition|Witt decomposition]]).
  
For a recent account of fibre bundles over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m120/m120110/m120110101.png" /> and open books see [[#References|[a1]]].
+
For a recent account of fibre bundles over $S ^ { 1 }$ and open books see [[#References|[a1]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Ranicki,  "High-dimensional knot theory" , Springer  (1998)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  A. Ranicki,  "High-dimensional knot theory" , Springer  (1998)</td></tr></table>

Latest revision as of 15:30, 1 July 2020

of an automorphism of a manifold

The mapping torus of a self-mapping $h : F \rightarrow F$ is the identification space

\begin{equation*} T ( h ) = F \times [ 0,1 ] / \{ ( x , 0 ) \sim ( h ( x ) , 1 ) : x \in F \}, \end{equation*}

which is equipped with a canonical mapping

\begin{equation*} p : T ( h ) \rightarrow S ^ { 1 } = [ 0,1 ] / \{ 0 \sim 1 \}, \end{equation*}

\begin{equation*} ( x , t ) \rightarrow t. \end{equation*}

If $F$ is a closed $n$-dimensional manifold and $h : F \rightarrow F$ is an automorphism, then $T ( h )$ is a closed $( n + 1 )$-dimensional manifold such that $p$ is the projection of a fibre bundle (cf. also Fibration) with fibre $F$ and monodromy $h$. If $F$ is an $n$-dimensional manifold with boundary and $h : F \rightarrow F$ is an automorphism such that $h | _ { \partial F } = 1 : \partial F \rightarrow \partial F$, then $T ( h )$ is an $( n + 1 )$-dimensional manifold with boundary $\partial T ( h ) = \partial F \times S ^ { 1 }$, and the union

\begin{equation*} t ( h ) = T ( h ) \bigcup_{ \partial T ( h )} \partial F \times D ^ { 2 } \end{equation*}

is a closed $( n + 1 )$-dimensional manifold, called an open book. It is important to know when manifolds are fibre bundles over $S ^ { 1 }$ and open books, for in those cases the classification of $( n + 1 )$-dimensional manifolds is reduced to the classification of automorphisms of $n$-dimensional manifolds.

A codimension-$2$ submanifold $K ^ { n } \subset M ^ { n + 2 }$ is fibred if it has a neighbourhood $K \times D ^ { 2 } \subset M$ such that the exterior $X = \operatorname { cl } ( M \backslash ( K \times D ^ { 2 } ) )$ is a mapping torus, i.e. if $X = t ( h )$ is an open book for some automorphism $h : F \rightarrow F$ of a codimension-$1$ submanifold $F ^ { n + 1 } \subset M$ with $\partial F = K$ (a Seifert surface, cf. Seifert manifold). Fibred knots $S ^ { n } \subset S ^ { n + 2 }$ and fibred links $\cup S ^ { n } \subset S ^ { n + 2 }$ have particularly strong geometric and algebraic properties (cf. also Knot and link diagrams; Knot theory).

In 1923, J.W. Alexander used geometry to prove that every closed $3$-dimensional manifold $M ^ { 3 }$ is an open book, that is, there exists a fibred link $\cup S ^ { 1 } \subset M$, generalizing the Heegaard splitting.

Fibred knots $S ^ { n } \subset S ^ { n + 2 }$ came to prominence in the 1960s with the influential work of J. Milnor on singular points of complex hypersurfaces, and with the examples of E. Brieskorn realizing the exotic spheres as links of singular points.

Connected infinite cyclic coverings $\overline{M}$ of a connected space $M$ are in one-one correspondence with expressions of the fundamental group $\pi _ { 1 } ( M )$ as a group extension

\begin{equation*} \mathcal{E} : 1 \rightarrow \pi _ { 1 } ( \overline { M } ) \rightarrow \pi _ { 1 } ( M ) \rightarrow \mathbf{Z} \rightarrow \{ 1 \}, \end{equation*}

and also with the homotopy classes of mappings $p : M \rightarrow S ^ { 1 }$ inducing surjections $p * : \pi _ { 1 } ( M ) \rightarrow \pi _ { 1 } ( S ^ { 1 } ) = \mathbf{Z}$. If $p : M \rightarrow S ^ { 1 }$ is the projection of a fibre bundle with $M$ compact, the non-compact space $\overline{M}$ is homotopy equivalent (cf. also Homotopy type) to the fibre $F$, which is compact, so that the fundamental group $\pi _ { 1 } ( \overline { M } ) = \pi _ { 1 } ( F )$ and the homology groups $H_{ *} ( \overline { M } ) = H_{ *} ( F )$ are finitely generated.

In 1962, J. Stallings used group theory to prove that if $M$ is an irreducible closed $3$-dimensional manifold with $\pi _ { 1 } ( M ) \neq \mathbf{Z} _ { 2 }$ and with an extension $\cal E$ such that $\pi _ { 1 } ( \overline { M } )$ is finitely generated (cf. also Finitely-generated group), then $M$ is a fibre bundle over $S ^ { 1 }$, with $M = T ( h )$ for some automorphism $h : F \rightarrow F$ of a surface $F ^ { 2 } \subset M$. In 1964, W. Browder and J. Levine used simply-connected surgery to prove that for $n \geq 6$ every closed $n$-dimensional manifold $M$ with $\pi _ { 1 } ( M ) = \mathbf{Z}$ and $H_{ *} ( \overline { M } )$ finitely generated, is a fibre bundle over $S ^ { 1 }$. In 1984, M. Kreck used this type of surgery to compute the bordism groups $\Delta_*$ of automorphisms of high-dimensional manifolds and to evaluate the mapping-torus mapping

\begin{equation*} T : \Delta _ { n } \rightarrow \Omega _ { n + 1 } ( S ^ { 1 } ), \end{equation*}

\begin{equation*} ( F ^ { n } , h : F \rightarrow F ) \rightarrow T ( h ), \end{equation*}

to the ordinary bordism over $S ^ { 1 }$ (cf. also Bordism).

A band is a compact manifold $M$ with a connected infinite cyclic covering $\overline{M}$ which is finitely dominated, i.e. such that there exists a finite CW-complex $K$ with mappings $f : \overline { M } \rightarrow K$, $g : K \rightarrow \overline { M }$ and a homotopy $g f \simeq 1 : \overline { M } \rightarrow \overline { M }$. In 1968, F.T. Farrell used non-simply-connected surgery theory to prove that for $n \geq 6$ a piecewise-linear (or differentiable) $n$-dimensional manifold band $M$ is a fibre bundle over $S ^ { 1 }$ if and only if a Whitehead torsion obstruction $\Phi ( M ) \in \operatorname{Wh} ( \pi _ { 1 } ( M ) )$ is $0$. The theorem was important in the structure theory of high-dimensional topological manifolds, and in 1970 was extended to topological manifolds by L. Siebenmann. There is also a version for Hilbert cube manifolds, obtained in 1974 by T.A. Chapman and Siebenmann. The fibering obstruction $\Phi ( M )$ for finite-dimensional $M$ measures the difference between the intrinsic simple homotopy type of $M$ given by a handle-body decomposition and the extrinsic simple homotopy type given by $M \simeq T ( \zeta )$ with $\zeta : \overline { M } \rightarrow \overline { M }$ a generating covering translation.

In 1972, H.E. Winkelnkemper used surgery to prove that for $n \geq 7$ a simply-connected $n$-dimensional manifold $M$ is an open book if and only if the signature of $M$ is $0$. In 1977, T. Lawson used non-simply-connected surgery to prove that for odd $n \geq 7$ every $n$-dimensional manifold $M$ is an open book. In 1979, F. Quinn used non-simply-connected surgery to prove that for even $n \geq 6$ an $n$-dimensional manifold $M$ is an open book if and only if an obstruction in the asymmetric Witt group of $\mathbf{Z} [ \pi _ { 1 } ( M ) ]$ vanishes, generalizing the Wall surgery obstruction (cf. also Witt decomposition).

For a recent account of fibre bundles over $S ^ { 1 }$ and open books see [a1].

References

[a1] A. Ranicki, "High-dimensional knot theory" , Springer (1998)
How to Cite This Entry:
Mapping torus. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mapping_torus&oldid=13400
This article was adapted from an original article by Andrew Ranicki (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article