Namespaces
Variants
Actions

Mapping-cone construction

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


The construction that associates with every continuous mapping $ f : X \rightarrow Y $ of topological spaces the topological space $ C _ {f} \supset Y $ obtained from the topological sum (disjoint union) $ C X \oplus Y $( here $ C X = ( X \times [ 0 , 1 ] ) / ( X \times \{ 0 \} ) $ is the cone over $ X $) by identifying $ x \times \{ 1 \} = f ( x) $, $ x \in X $. The space $ C _ {f} $ is called the mapping cone of $ f $. If $ X $ and $ Y $ are pointed spaces with distinguished points $ x \in X $, $ y \in Y $, then the generator $ x \times [ 0 , 1 ] $ of $ C X $ is contracted to a point, and $ C _ {f} $ is said to be the collapsed mapping cone of $ f $. For an arbitrary pointed topological space $ K $, the sequence $ X \rightarrow ^ {f} Y \subset C _ {f} $ induces an exact sequence

$$ [ X , K ] \leftarrow [ Y , K ] \leftarrow [ C _ {f} , K ] $$

of pointed sets. The mapping $ f $ is homotopic to the constant mapping to the distinguished point if and only if $ Y $ is a retract of $ C _ {f} $( cf. Retract of a topological space).

References

[1] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)
[2] M.K. Tangora, "Cohomology operations and their applications in homotopy theory" , Harper & Row (1968)

Comments

The algebraic analogue of the mapping-cone construction is as follows.

Let $ u: K _ {\bullet } \rightarrow L _ {\bullet } $ be a morphism of complexes, i.e. $ u = ( u _ {n} ) _ {n \in \mathbf Z } $ and $ u _ {n-1} \partial _ {n} = \partial _ {n} u _ {n} $, where $ \partial _ {n} ^ {K} : K _ {n} \rightarrow K _ {n-1} $. The mapping cone of $ u $ is the complex $ C( u) _ {\bullet } $ defined by

$$ C( u) _ {n} = K _ {n-1} \oplus L _ {n} ,\ \ \partial ( k, l) = ( - \partial k , \partial l + uk ). $$

The injections $ L _ {n} \rightarrow C( u) _ {n} $ define a morphism of complexes and if $ K [ - 1 ] $ denotes the complex with $ K [ - 1 ] _ {n} = K _ {n-1} $ and $ \partial _ {n} ^ {K[ - 1 ] } = - \partial _ {n-1} ^ {K} $, then the projections $ C( u) _ {n} \rightarrow K _ {n-1} $ yield

$$ 0 \rightarrow L _ {n} \rightarrow C( u) _ {n} \rightarrow K[ - 1] _ {n} \rightarrow 0, $$

which fit together to define a short exact sequence of complexes

$$ 0 \rightarrow L _ {\bullet } \rightarrow ^ { i } C( u) _ {\bullet } \rightarrow ^ { p } K[ - 1] _ {\bullet } \rightarrow 0, $$

and there results a long exact homology sequence

$$ \dots \rightarrow \ H _ {n} ( L _ { \bullet } ) \rightarrow ^ { {i _ * } } \ H _ {n} ( C( u) _ { \bullet } ) \rightarrow ^ { {p _ * } } \ H _ {n-1} ( K _ { \bullet } ) \rightarrow ^ { {u _ * } } \ H _ {n-1} ( L _ {\bullet } ) \rightarrow \dots . $$

By turning a complex $ K _ {\bullet } $ into a "co-complex" $ K ^ { \bullet } $, $ K ^ {n} = K _ {-n} $, the analogous constructions and results in a cohomological setting are obtained.

The complex $ K [ - 1] _ {\bullet } $ is called the suspension of the complex $ K _ {\bullet } $.

References

[a1] S. MacLane, "Homology" , Springer (1963) pp. Sect. II.4
How to Cite This Entry:
Mapping-cone construction. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mapping-cone_construction&oldid=51293
This article was adapted from an original article by A.F. Kharshiladze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article