Namespaces
Variants
Actions

Difference between revisions of "Mahler method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (Automatically changed introduction)
(One intermediate revision by the same user not shown)
Line 1: Line 1:
In 1929, K. Mahler [[#References|[a1]]] started the study of transcendence properties of the values of analytic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300301.png" /> satisfying certain functional equations. A simple example is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300302.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300303.png" /> is a [[Polynomial|polynomial]] with algebraic coefficients and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300304.png" /> an integer. For instance, the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300305.png" />, which is analytic in the unit disc of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300306.png" /> (cf. also [[Analytic function|Analytic function]]), satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300307.png" />, and Mahler proved that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300308.png" /> is transcendental (cf. also [[Transcendental number|Transcendental number]]) whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300309.png" /> is an [[Algebraic number|algebraic number]] satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003010.png" />.
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,  
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct and if all png images have been replaced by TeX code, please remove this message and the {{TEX|semi-auto}} category.
  
The functional equation is used to derive many points from the starting one (in the previous example the points are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003011.png" />), and this iteration yields points close to the origin.
+
Out of 35 formulas, 34 were replaced by TEX code.-->
 +
 
 +
{{TEX|semi-auto}}{{TEX|part}}
 +
In 1929, K. Mahler [[#References|[a1]]] started the study of transcendence properties of the values of analytic functions $f$ satisfying certain functional equations. A simple example is $P ( z , f ( z ) , f ( z ^ { d } ) ) = 0$, where $P$ is a [[Polynomial|polynomial]] with algebraic coefficients and $d \geq 2$ an integer. For instance, the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m1300305.png"/>, which is analytic in the unit disc of $\mathbf{C}$ (cf. also [[Analytic function|Analytic function]]), satisfies $f ( z ^ { d } ) = f ( z ) - z$, and Mahler proved that $f ( \alpha )$ is transcendental (cf. also [[Transcendental number|Transcendental number]]) whenever $\alpha$ is an [[Algebraic number|algebraic number]] satisfying $0 &lt; | \alpha | &lt; 1$.
 +
 
 +
The functional equation is used to derive many points from the starting one (in the previous example the points are $\{ \alpha , \alpha ^ { d } , \ldots , \alpha ^ { d ^ { n } } , \ldots \}$), and this iteration yields points close to the origin.
  
 
Mahler's proof involves the construction of an auxiliary polynomial. This construction is different from Hermite's one, since the polynomial is not explicit, and also different from Siegel's, Gel'fond's or Schneider's ones (cf. also [[Gel'fond–Schneider method|Gel'fond–Schneider method]]; [[Schneider method|Schneider method]]), since it rests on an argument of linear algebra rather than on the Thue–Siegel lemma (cf. also [[Dirichlet principle|Dirichlet principle]]): No bound for the height of the coefficients is required.
 
Mahler's proof involves the construction of an auxiliary polynomial. This construction is different from Hermite's one, since the polynomial is not explicit, and also different from Siegel's, Gel'fond's or Schneider's ones (cf. also [[Gel'fond–Schneider method|Gel'fond–Schneider method]]; [[Schneider method|Schneider method]]), since it rests on an argument of linear algebra rather than on the Thue–Siegel lemma (cf. also [[Dirichlet principle|Dirichlet principle]]): No bound for the height of the coefficients is required.
  
Mahler also worked with functions of several variables [[#References|[a1]]], [[#References|[a2]]], introducing transformations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003012.png" /> given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003013.png" /> monomials. By this method he even obtained results of algebraic independence [[#References|[a3]]].
+
Mahler also worked with functions of several variables [[#References|[a1]]], [[#References|[a2]]], introducing transformations $\mathbf{C} ^ { n } \rightarrow \mathbf{C} ^ { n }$ given by $n$ monomials. By this method he even obtained results of algebraic independence [[#References|[a3]]].
  
 
The topic was somehow forgotten until 1969 [[#References|[a4]]]. Thanks to the work of several mathematicians, including J.H. Loxton, A.J. van der Poorten, K.K. Kubota, K. Nishioka, P.G. Becker, M. Amou, and T. Töpfer (see [[#References|[a5]]]), general results are now available for the transcendence and algebraic independence of values of such functions, in one or several variables. This method turns out to be one of the most efficient ones for proving strong results of algebraic independence. Here is an example.
 
The topic was somehow forgotten until 1969 [[#References|[a4]]]. Thanks to the work of several mathematicians, including J.H. Loxton, A.J. van der Poorten, K.K. Kubota, K. Nishioka, P.G. Becker, M. Amou, and T. Töpfer (see [[#References|[a5]]]), general results are now available for the transcendence and algebraic independence of values of such functions, in one or several variables. This method turns out to be one of the most efficient ones for proving strong results of algebraic independence. Here is an example.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003015.png" /> be positive integers with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003017.png" /> an algebraic number with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003018.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003019.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003020.png" /> be a sequence of algebraic numbers satisfying a linear recurrence relation. Assume <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003021.png" /> are linearly independent. Then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003022.png" /> numbers
+
Let $n$, $d$ be positive integers with $d \geq 2$ and $\alpha$ an algebraic number with $0 &lt; | \alpha | &lt; 1$. For $1 \leq i \leq n$, let $\underline { \beta } ^ { ( i ) } = ( \beta _ { 0 } ^ { ( i ) } , \beta _ { 1 } ^ { ( i ) } , \ldots )$ be a sequence of algebraic numbers satisfying a linear recurrence relation. Assume $\underline { \beta } ^ { ( 1 ) } , \ldots , \underline { \beta } ^ { ( n ) }$ are linearly independent. Then the $n$ numbers
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003023.png" /></td> </tr></table>
+
\begin{equation*} \sum _ { k = 0 } ^ { \infty } \beta _ { k } ^ { ( i ) } \alpha ^ { d ^ { k } } ( 1 \leq i \leq n ) \end{equation*}
  
 
are algebraically independent.
 
are algebraically independent.
Line 17: Line 25:
 
Also, sharp estimates of [[Diophantine approximations|Diophantine approximations]] (transcendence measures as well as measures of algebraic independence) have been obtained. A far-reaching extension of Mahler's vanishing theorem was given by D.W. Masser in 1982.
 
Also, sharp estimates of [[Diophantine approximations|Diophantine approximations]] (transcendence measures as well as measures of algebraic independence) have been obtained. A far-reaching extension of Mahler's vanishing theorem was given by D.W. Masser in 1982.
  
Mahler's early paper [[#References|[a1]]] contains the transcendence of the Thue–Morse number, whose binary expansion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003024.png" /> is given by the fixed point starting with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003025.png" /> of the substitution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003027.png" /> (the related functional equation is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003028.png" />). More generally, Mahler's method has interesting deep connections with automata theory (cf. also [[Formal languages and automata|Formal languages and automata]]). It is conjectured that a number whose expansion in an integral basis is given by an automaton is either rational or else transcendental.
+
Mahler's early paper [[#References|[a1]]] contains the transcendence of the Thue–Morse number, whose binary expansion $0.0110100\dots$ is given by the fixed point starting with $0$ of the substitution $0 \mapsto 01$ and $1 \mapsto 10$ (the related functional equation is $f ( z ) = ( 1 - z ) f ( z ^ { 2 } )$). More generally, Mahler's method has interesting deep connections with automata theory (cf. also [[Formal languages and automata|Formal languages and automata]]). It is conjectured that a number whose expansion in an integral basis is given by an automaton is either rational or else transcendental.
  
One of Mahler's goals (see [[#References|[a4]]]) was to derive from his method the transcendence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003029.png" /> for algebraic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003030.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003031.png" />. Here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003032.png" /> is the [[Modular function|modular function]], which satisfies indeed functional equations, namely the modular equations relating <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003034.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m130/m130030/m13003035.png" />. This conjecture was proved only in 1995 (see [[Gel'fond–Schneider method|Gel'fond–Schneider method]]).
+
One of Mahler's goals (see [[#References|[a4]]]) was to derive from his method the transcendence of $J ( \alpha )$ for algebraic $\alpha$ with $0 &lt; | \alpha | &lt; 1$. Here, $J$ is the [[Modular function|modular function]], which satisfies indeed functional equations, namely the modular equations relating $J ( q )$ and $J ( q ^ { n } )$ for any $n \geq 1$. This conjecture was proved only in 1995 (see [[Gel'fond–Schneider method|Gel'fond–Schneider method]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Mahler,  "Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichung"  ''Math. Ann.'' , '''101'''  (1929)  pp. 342–366  (Corrigendum: 103 (1930), 532)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  K. Mahler,  "Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen"  ''Math. Ann.'' , '''103'''  (1930)  pp. 573–587</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  K. Mahler,  "Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen"  ''Math. Z.'' , '''32'''  (1930)  pp. 545–585</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  K. Mahler,  "Remarks on a paper by W. Schwarz"  ''J. Number Theory'' , '''1'''  (1969)  pp. 512–521</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  K. Nishioka,  "Mahler functions and transcendence" , ''Lecture Notes in Mathematics'' , '''1631''' , Springer  (1996)</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  K. Mahler,  "Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichung"  ''Math. Ann.'' , '''101'''  (1929)  pp. 342–366  (Corrigendum: 103 (1930), 532)</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  K. Mahler,  "Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen"  ''Math. Ann.'' , '''103'''  (1930)  pp. 573–587</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  K. Mahler,  "Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen"  ''Math. Z.'' , '''32'''  (1930)  pp. 545–585</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  K. Mahler,  "Remarks on a paper by W. Schwarz"  ''J. Number Theory'' , '''1'''  (1969)  pp. 512–521</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  K. Nishioka,  "Mahler functions and transcendence" , ''Lecture Notes in Mathematics'' , '''1631''' , Springer  (1996)</td></tr></table>

Revision as of 17:44, 1 July 2020

In 1929, K. Mahler [a1] started the study of transcendence properties of the values of analytic functions $f$ satisfying certain functional equations. A simple example is $P ( z , f ( z ) , f ( z ^ { d } ) ) = 0$, where $P$ is a polynomial with algebraic coefficients and $d \geq 2$ an integer. For instance, the function , which is analytic in the unit disc of $\mathbf{C}$ (cf. also Analytic function), satisfies $f ( z ^ { d } ) = f ( z ) - z$, and Mahler proved that $f ( \alpha )$ is transcendental (cf. also Transcendental number) whenever $\alpha$ is an algebraic number satisfying $0 < | \alpha | < 1$.

The functional equation is used to derive many points from the starting one (in the previous example the points are $\{ \alpha , \alpha ^ { d } , \ldots , \alpha ^ { d ^ { n } } , \ldots \}$), and this iteration yields points close to the origin.

Mahler's proof involves the construction of an auxiliary polynomial. This construction is different from Hermite's one, since the polynomial is not explicit, and also different from Siegel's, Gel'fond's or Schneider's ones (cf. also Gel'fond–Schneider method; Schneider method), since it rests on an argument of linear algebra rather than on the Thue–Siegel lemma (cf. also Dirichlet principle): No bound for the height of the coefficients is required.

Mahler also worked with functions of several variables [a1], [a2], introducing transformations $\mathbf{C} ^ { n } \rightarrow \mathbf{C} ^ { n }$ given by $n$ monomials. By this method he even obtained results of algebraic independence [a3].

The topic was somehow forgotten until 1969 [a4]. Thanks to the work of several mathematicians, including J.H. Loxton, A.J. van der Poorten, K.K. Kubota, K. Nishioka, P.G. Becker, M. Amou, and T. Töpfer (see [a5]), general results are now available for the transcendence and algebraic independence of values of such functions, in one or several variables. This method turns out to be one of the most efficient ones for proving strong results of algebraic independence. Here is an example.

Let $n$, $d$ be positive integers with $d \geq 2$ and $\alpha$ an algebraic number with $0 < | \alpha | < 1$. For $1 \leq i \leq n$, let $\underline { \beta } ^ { ( i ) } = ( \beta _ { 0 } ^ { ( i ) } , \beta _ { 1 } ^ { ( i ) } , \ldots )$ be a sequence of algebraic numbers satisfying a linear recurrence relation. Assume $\underline { \beta } ^ { ( 1 ) } , \ldots , \underline { \beta } ^ { ( n ) }$ are linearly independent. Then the $n$ numbers

\begin{equation*} \sum _ { k = 0 } ^ { \infty } \beta _ { k } ^ { ( i ) } \alpha ^ { d ^ { k } } ( 1 \leq i \leq n ) \end{equation*}

are algebraically independent.

Also, sharp estimates of Diophantine approximations (transcendence measures as well as measures of algebraic independence) have been obtained. A far-reaching extension of Mahler's vanishing theorem was given by D.W. Masser in 1982.

Mahler's early paper [a1] contains the transcendence of the Thue–Morse number, whose binary expansion $0.0110100\dots$ is given by the fixed point starting with $0$ of the substitution $0 \mapsto 01$ and $1 \mapsto 10$ (the related functional equation is $f ( z ) = ( 1 - z ) f ( z ^ { 2 } )$). More generally, Mahler's method has interesting deep connections with automata theory (cf. also Formal languages and automata). It is conjectured that a number whose expansion in an integral basis is given by an automaton is either rational or else transcendental.

One of Mahler's goals (see [a4]) was to derive from his method the transcendence of $J ( \alpha )$ for algebraic $\alpha$ with $0 < | \alpha | < 1$. Here, $J$ is the modular function, which satisfies indeed functional equations, namely the modular equations relating $J ( q )$ and $J ( q ^ { n } )$ for any $n \geq 1$. This conjecture was proved only in 1995 (see Gel'fond–Schneider method).

References

[a1] K. Mahler, "Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichung" Math. Ann. , 101 (1929) pp. 342–366 (Corrigendum: 103 (1930), 532)
[a2] K. Mahler, "Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen" Math. Ann. , 103 (1930) pp. 573–587
[a3] K. Mahler, "Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen" Math. Z. , 32 (1930) pp. 545–585
[a4] K. Mahler, "Remarks on a paper by W. Schwarz" J. Number Theory , 1 (1969) pp. 512–521
[a5] K. Nishioka, "Mahler functions and transcendence" , Lecture Notes in Mathematics , 1631 , Springer (1996)
How to Cite This Entry:
Mahler method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mahler_method&oldid=16978
This article was adapted from an original article by Michel Waldschmidt (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article