Namespaces
Variants
Actions

Lucas polynomials

From Encyclopedia of Mathematics
Revision as of 22:06, 28 December 2014 by Richard Pinch (talk | contribs) (better)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 11B39,11K99,60C05 [MSN][ZBL]


The polynomials $V_n(x)$ (cf. [BeHo] and [Lu]) given by $$\left.\begin{align}V_0(x) &= 2,\\ V_1(x) &= x,\\ V_n(x) &= x V_{n-1}(x)+V_{n-2}(x),\quad n = 2,3,\dots \end{align}\quad\right\}\tag{a1}$$ They reduce to the Lucas numbers $L_n$ for $x=1$, and they satisfy several identities, which may be easily proved by induction, e.g.: \begin{alignat}{1} &V_{-n}(x) &=\ & (-1)^nV_n(x);\tag{a2}\\ &V_{m+n}(x) &=& V_m(x)V_n(x) - (-1)^nV_{m-n}(x);\tag{a3}\\ &V_{2n}(x) &=& V_n^{\;2}(x)-2(-1)^n;\tag{a4}\\ &V_{2n+1}(x)\ &=& V_{n+1}(x)V_n(x)-(-1)^nx;\tag{a5}\\ &U_{2n}(x) &=& U_n(x)V_n(x),\tag{a6} \end{alignat} where $U_m(x)$ denote the Fibonacci polynomials; $$V_n(x) = \alpha^n(x)+\beta^n(x),\tag{a7}$$ where $$\alpha(x) = \frac{x+(x^2+4)^{1/2}}{2},\quad \beta(x) = \frac{x-(x^2+4)^{1/2}}{2},$$ so that $\alpha(x)\beta(x) = -1$; and $$V_n(x) = \sum_{j=0}^{[n/2]} \frac{n}{n-j}\; \frac{(n-j)!}{j!(n-2j)!}\; x^{n-2j},\quad n=1,2,\dots,\tag{a8} $$ where $[y]$ denotes the greatest integer in $y$.

The Lucas polynomials are related to the Chebyshev polynomials $T_n(x) = \cos(n\theta)$, $\cos(\theta) = x$, by $$V_n(x) = 2i^{-n} T_n\Big(\frac{ix}{2}\Big),\; i = (-1)^{1/2}.\tag{a9}$$ J. Riordan [Ri] considered the polynomials $h_n(x) = i^{-n}V_n(ix)$ and the Lucas-type polynomials $$L_n(x) = \sum_{j=0}^{[n/2]} \frac{n}{n-j}\; \frac{(n-j)!}{j!(n-2j)!}\; x^{n-j} = x^{n/2}V_n(x^{1/2}),\; n = 1,2,\dots,\tag{a10}$$ in a derivation of Chebyshev-type pairs of inverse relations. V.E. Hoggatt Jr. and M. Bicknell [HoBi] found the roots of $V_n(x)$. These are $x_j = 2i\cos((2j+1)\pi/2n)$, $j=1,\dots,n-1$. Bicknell [Bi] showed that $V_m(x)$ divides $V_n(x)$ if and only if $n$ is an odd multiple of $m$. G.E. Bergum and Hoggatt Jr. introduced in [BeHo] the bivariate Lucas polynomials $V_n(x,y)$ by the recursion $$\left.\begin{align} V_0(x,y) &= 2,\\ V_1(x,y) &= x,\\ V_n(x,y) &= x V_{n-1}(x,y)+ y V_{n-2}(x,y),\quad n = 2,3,\ldots \end{align}\right\rbrace\tag{a11}$$ generalized (a7) for $V_n(x,y)$, and showed that the $V_n(x,y)$ are irreducible polynomials over the rational numbers if and only if $n=2^k$ for some positive integer (cf. also Irreducible polynomial). The formula $$V_n(x,y) = \sum_{j=0}^{[n/2]} \frac{n}{n-j}\; \frac{(n-j)!}{j!(n-2j)!} \; x^{n-2j}y^j,\; n = 1,2,\dots,\tag{a12}$$ which may be derived by induction on $n$ or by expanding the generating function of $V_n(x,y)$, generalizes (a8).

Ch.A. Charalambides [Ch] introduced and studied the Lucas and Lucas-type polynomials of order $k$, $V_n^{\;(k)}(x)$ and $L_n^{\;(k)}(x)$. The Lucas-type polynomials of order $k$ satisfy the recurrence $$\left.\begin{alignat}{1}L_1^{\;(k)}(x) &= x,\\ L_n^{\;(k)}(x) &= x\Big(n+\sum_{j=1}^{n-1}L_{n-j}^{\;(k)}(x)\Big),\; & n = 2,\dots,k, \\ L_n^{\;(k)}(x) &= x\sum_{j=1}^k L_{n-j}^{\;(k)}(x),\; & n = k+1,k+2,\dots \end{alignat}\right\}\tag{a13}$$ These polynomials have the binomial and multinomial expansions $$\begin{alignat}{1}L_n^{\;(k)}(x) &= -1 + \sum_{j=0}^{[n/(k+1)]}(-1)^j\frac{n}{n-jk}\;\frac{(n-jk)!}{j!(n-jk-j)!}x^j(1+x)^{n-jk-j}\\ &=\sum \frac{n_1+2n_2+\cdots+kn_k}{n_1+\cdots+n_k}\;\frac{(n_1+\cdots+n_k)!}{n_1!\cdots n_k!} x^{n_1+\cdots+n_k},\end{alignat}\tag{a14} $$ where the second summation is taken over all non-negative integers $n_1,\dots,n_k$ such that $n_1+2n_2+\cdots +kn_k = n$, and they are related to the Fibonacci-type polynomials of order $k$ (cf. [Ph] and [PhGePh2] and Fibonacci polynomials), $F_n^{\;(k)}(x)$, by $$L_n^{\;(k)}(x) = x \sum_{j=1}^{\min\{n,k\}} jF_{n-j+1}^{\;(k)}(x).\tag{a15}$$ Furthermore, $$\begin{align}V_n^{\;(k)}(x) &= x^{-n} L_n^{\;(k)}(x^k)\\ &= \sum_{j=1}^{\min\{n,k\}} jx^{k-j+1}U_{n-j+1}^{\;(k)}(x),\; n=1,2,\dots,\; k=2,3,\dots,\end{align}\tag{a16}$$ where the $U_n^{\;(k)}(x)$ are the Fibonacci polynomials of order $k$ (cf. [PhGePh]). Charalambides [Ch] showed that the reliability of a circular consecutive $k$-out-of-$n$: $F$-system, $R_c(p; k,n)$, whose components function independently with probability $p$ (and $q = 1-p$) is given by $$\begin{align}R_c(p; k,n) &= q^n L_n^{\;(k)}\Big(\frac{p}{q}\Big)\\ &= -q^n + \sum_{j=0}^{[n/(k+1)]}(-1)^j\frac{n}{n-jk}\; \frac{(n-jk)!}{j!(n-jk-j)!}p^jq^{jk}.\end{align}\tag{a17}$$

References

[BeHo] G.E. Bergum, V.E. Hoggatt, Jr., "Irreducibility of Lucas and generalized Lucas polynomials" Fibonacci Quart., 12 (1974) pp. 95–100 MR0349581 Zbl 0277.12002
[Bi] M. Bicknell, "A primer for the Fibonacci numbers. VII" Fibonacci Quart., 8 (1970) pp. 407–420
[Ch] Ch.A. Charalambides, "Lucas numbers and polynomials of order $k$ and the length of the longest circular success run" Fibonacci Quart., 29 (1991) pp. 290–297 MR1131401 Zbl 0745.11014
[HoBi] V.E. Hoggatt Jr., M. Bicknell, "Roots of Fibonacci polynomials" Fibonacci Quart., 11 (1973) pp. 271–274 MR0323700 Zbl 0272.33004
[Lu] E. Lucas, "Theorie de fonctions numeriques simplement periodiques" Amer. J. Math., 1 (1878) pp. 184–240; 289–321 MR1505176 MR1505164 MR1505161
[Ph] A.N. Philippou, "Distributions and Fibonacci polynomials of order $k$, longest runs, and reliability of consecutive-$k$-out-of-$n$: $F$ systems" A.N. Philippou (ed.) G.E. Bergum (ed.) A.F. Horadam (ed.), Fibonacci Numbers and Their Applications, Reidel (1986) pp. 203–227 MR0857826 Zbl 0602.60023
[PhGePh] A.N. Philippou, C. Georghiou, G.N. Philippou, "Fibonacci polynomials of order $k$, multinomial expansions and probability" Internat. J. Math. Math. Sci., 6 (1983) pp. 545–550 MR0712573 Zbl 0524.10008
[PhGePh2] A.N. Philippou, C. Georghiou, G.N. Philippou, "Fibonacci-type polynomials of order $k$ with probability applications" Fibonacci Quart., 23 (1985) pp. 100–105 MR0797126 Zbl 0563.10014
[Ri] J. Riordan, "Combinatorial Identities", Wiley (1968) MR0231725 Zbl 0194.00502
How to Cite This Entry:
Lucas polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lucas_polynomials&oldid=35971
This article was adapted from an original article by Andreas N. Philippou (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article